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ABSTRACT 

The problem t rea ted   here  i s  the  computation of fuel   opt imal   controls  

for   the   l a rge   angle   a t t i tude   mot ions  of a satel l i te  system i n  which the  

con t ro l  i s  obtained  by  three sets of  gas j e t s   w i t h  bounded thrus ts ,   each  

generating  torques  about one of  . the  principal  axes of i n e r t i a .  Using 

a r e s u l t  from  optimal  control  theory,  an  algorithm i s  developedthat  

i t e r a t i v e l y  improves  on an   i n i t i a l   guess   (nomina l )   fo r   t he   con t ro l   h i s to ry  

which  does  not  meet  terminal  constraints  and/or  does  not  minimize  the 

fue l   cos t .   I n   u s ing   t he   a lgo r i thm,  which i s  based on l i n e a r  programming, 

it i s  necessary   to   express   the   var ia t ion  of t h e   f u e l   c o s t  and va r i a t ions  

of the components  of the   t e rmina l   s ta te   cons t ra in t   vec tor  as l inear   func-  

t i o n s  of va r i a t ions   i n   t he   con t ro l .  

The algorithm i s  t e s t e d  on two s e t s  of s a t e l l i t e   d i f f e r e n t i a l  

equat ions .   In  one case,  a l l  dynamical e f f ec t s   a r e   cons ide red .   In   t he  

othel  case,  because  control  torque bounds a r e   l a r g e  enough, it i s  possible  

to   neglect   gravi ty   gradient   torque  effects   and’orbi ta l   motion  effects .  

A method t o  recursively  approach minimum t ime  control   solut ions by 

u s i n g   t h i s  minimum fue l   a lgor i thm i s  descr ibed  and  i l lustrated.  Numerical 

r e s u l t s   a r e  compared wi th   t he   r e su l t s  of others  who have  worked i d e n t i c a l  

examples . 
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I. INTRODUCTION 

This   report   g ives  a method by  which a satel l i te  or general  system 

may be  controlled  such  that  a minimum amount of f u e l  i s  consumed. The 

nonl inear   sa te l l i t e   equa t ions  of motion a re   u sed   i n   t h i s   r epor t .  The 

s a t e l l i t e  i s  assumed t o  have a n   a r b i t r a r y   i n i t i a l   o r i e n t a t i o n   a n d  tumble 

rate. The so lu t ion   cons is t s   o f  a scheme by  which  an  active  torque  device 

may be   ac tua t ed   t o   pos i t i on   t he   s a t e l l i t e   t o   ano the r   g iven   o r i en ta t ion  

and  tumble r a t e  a t  a given  t ime  in  the  future.  The active  torque  device 

i s  th ree  sets of cold  gas   je ts   located  or thogonal ly  on the  spacecraf t .  

The magnitude of torque  generated  by  these  devices i s  d i rec t ly   p ropor-  

t i ona l   t o   t he   t ime   r a t e  of f u e l  consumption. The  "minimum f u e l  problem'' 

cons i s t s  of accomplishing  the  orientation  mission  while  expending a 

minimum amount  of f u e l .  The s a t e l l i t e  t o  be  considered i s  i n   e l l i p t i c  

orb i t   about   the   ear th ,   bu t   th i s   assumpt ion   does   no t   c r i t i ca l ly   in f luence  

the   so lu t ion  of the  problem. The specific  orbit   used  only  modifies  the 

dynamical  equations  of  the  system. 

There  are,  however, some assumptions  and  res t r ic t ions  to   be imposed 

on the  problem. The f i r s t  of these  res t r ic t ions  concerns  the  control  

torque. The to rque   l eve l s   a r e  bounded i n  magnitude.  Since no device  can 

genera te   a rb i t ra r i ly   l a rge   to rques ,   th i s   assumpt ion  i s  reasonable. How- 

ever,  by bounding  the  torque, it i s  poss ib le   to   reques t  a mission  which 

i s  impossible t o  accomplish i n  the  allowed  time. If such i s  the  case, one 

must e i ther   equip   the   sa te l l i t e   wi th   l a rger   to rque   genera t ing   gas   j e t s  

or accept  the  longer  time  necessary  to  accomplish  the  mission  with  the 

sma l l e r   j e t s .  

The next  assumption i s  tha t   the   cont ro l   to rque   en ters   the  dynamics 

equat ions  l inear ly .  What t h i s  means i s  more spec i f i ca l ly   de f ined   i n  

Chapter 11, but  it i s  not a very  severe  res t r ic t ion  because for many 

space  vehicle  systems one p re fe r s   t o   des ign   con t ro l s  which en te r   i n   t he  

dynamics equat ions   l inear ly .  We s h a l l   a r b i t r a r i l y  l i m i t  t h e   t o t a l  

r o t a t i o n   o f   t h e   s a t e l l i t e   i n   s e e k i n g  a new o r i e n t a t i o n   t o   l e s s   t h a n  180 
degrees .   This   excludes  the  possibi l i ty  of o r i e n t i n g   t h e   s a t e l l i t e   i n  a 

1 



posi t ion  diametr ical ly   opposi te   f rom  the  or iginal   posi t ion.  However, if 

one d i d   d e s i r e   t o   t u r n   t h e   s a t e l l i t e  180 degrees, it could  be  accomplished 

i n  two missions. The f i r s t  mission would s p i n   t h e   s a t e l l i t e  B degrees 

( 0  < p , < 180) and the  second  mission would s p i n   t h e   s a t e l l i t e  180-8, 
degrees.  Another  approach i s  t o   j u s t   l e t   t h e   s a t e l l i t e   d r i f t  a l i t t l e  

and then start the  control  from  there.  The r eason   fo r   l imi t ing   t he  

s p i n   t o  180 degrees  has t o  do with  ambigui t ies   which  ar ise   in   the 

dynamics equations.   This i s  discussed more f u l l y   i n  Chapter I1 i n   t h e  

sec t ion  on indifference  regions.  

. 
1 

1 

In   t he   even t  of a n   e l l i p t i c a l   o r b i t ,   a n o t h e r   c o n t r o l  scheme  must  be 

used for   main ta in ing   the   pos i t ion  once the  new orientat ion  has   been 

reached. 

Although  the work  on optimization  problems i s  w e l l   j u s t i f i e d  by 

what i s  learned   in   s tudyingthem,   there   a re   impor tan t   p rac t ica l   cont r i -  

bu t ions   t o  be gained  from  optimization. Even i f   the   op t imal   cont ro l  

scheme i s  not  used, it provides   va luable   ins ight   in to   jus t  how good 

other more p rac t i ca l   con t ro l  schemes are .   Since  pioneering work i n   t h e  

theory of opt imal   control  and the  advent  of  Breakwell's  compytational 

technique  using  large  digi ta l   computers   for   opt imizat ion  calculat ions,  

optimization  has  evolved  to  the  point of  becoming p r a c t i c a l   t o  implement 

in   t he   ac tua l   con t ro l  of some systems.  This  report w i l l  po in t   to   the  

p o s s i b i l i t y  of applying  the  following  algorithm of opt imiza t ion   in  

ac tua l ly   con t ro l l i ng  a s a t e l l i t e .  

I n   t h i s   s e c t i o n  w i l l  be d i scussed   b r i e f ly  some other  reports  which 

a r e   r e l a t e d   i n   e i t h e r   t h e  problem  statement o r  method of s o l u t i o n   t o  

the  problem i n   t h i s   r e p o r t .  There a r e  numerous a r t i c l e s  which  deal  only 

with low order,   l inear  systems  and no mention  of   these  ar t ic les  w i l l  be 

made. 

The mot iva t ion   fo r   t h i s   r epor t  comes p r i n c i p a l l y  from work  done i n  

1966 by K. A. Hales and I. Fliigge-Lotz in   re fe rence  1. Thei r   p ro jec t  

was t o  compute minimum f u e l   c o n t r o l s   f o r   t h e  same s a t e l l i t e   a c q u i s i t i o n  

control  system as i n   t h i s   r e p o r t .  The approach  used w a s  a n   i t e r a t i v e  

2 



procedure  of  "steepest  descent". A nominal con t ro l  w a s  improved  each 

i t e r a t ion   by   min imiz ing   t he   i n t eg ra l   ove r   t he   t ime   i n t e rva l   [ t  t ] of 

a weighted sum of   the  squares   of   the   var ia t ions of the   cont ro l  components. 

This  minimization w a s  s u b j e c t   t o   t h e   c o n s t r a i n t  of t he  dynamics of t he  

system.  This  constraint  w a s  imposed  on the  minimization  by  the  Lagrange 

Multiplier  Technique. The cos t  i s  introduced as an   addi t iona l  state 

var iable   and i s  then   t r ea t ed  as jus t   another   t e rmina l   cons t ra in t .  The 

minimum f u e l   c o n t r o l  which 'is a r r ived  a t  by th i s   t echn ique   does   s a t i s fy  

the   t e rmina l   cons t ra in ts  on t h e   s t a t e  and  gives a cos t  which i s  consider- 

ably  lower  than  the  cost   associated  with a good "classical"  feedback 

design. The method has  the  advantage of be ing   qu i t e   i n sens i t i ve   t o   t he  

i n i t i a l   a r b i t r a r y   c h o i c e  of control .  It has  the  disadvantages of o f t e n  

requir ing many i t e r a t i o n s   t o  converge t o  a so lu t ion  and  of  seldom  con- 

ve rg ing   t o  a t r u e  minimum fue l   con t ro l .  The reason why the   so lu t ion  

seldom  converges t o  a t r u e  minimum i s  connected  with  the  idea of introduc- 

ing   the   cos t  as another state. I n  doing  this,  Hales  not  only  had  to 

choose   t he   f i na l   s t a t e   t o  which  the  solution must  converge,  but  also  the 

f i n a l   c o s t .   S i n c e  one does  not know the minimum cost   apr ior i ,   chances 

of randomly p ick ing   the   t rue  minimum cos t  as t h e   c o s t   t o  which the 

solution  should  converge  are  quite  remote.  Hales  did  use a techique 

of picking  this  cost,  though,  which  normally gave a so lu t ion  of con t ro l  

r e s u l t i n g   i n  a cost   only 10 t o  1 5  per  cent above the  t rue  opt imal   cost .  

0' f 

I n  1962, L. A. Zadeh  and B. H. Whalen (reference 2) proposed a 

method for   solving  l inear   discrete   opt imal   control   problems  using  l inear  

programming.  They proposed  solut ions  for   opt imizat ion  with  respect   to  

e i ther   t ime or f u e l  consumption. In   bo th   cases ,   the   l inear i ty   o f   the  

system i s  an  important  assumption,  since  this  results  in one of t h e   s e t s  

of l i n e a r  programming constraint   equat ions.  For continuous  t ime  plants,  

the t i m e  i n t e r v a l  must  be d iscre t ized .   Discre t iz ing   usua l ly   necess i ta tes  

solving a l i n e a r  programming  problem  of many v a r i a b l e s ,   p a r t i c u l a r l y  i f  

the  system i s  of high  order.  

Linear programming has   a l so   been   appl ied   to  minimax problems. I n  

reference 3, G. Lack  and M. Enns  maximize the  c losest   approach of a 

t r a j e c t o r y   t o  a "danger  region" i n  szate space.  This i s  d i r e c t l y  

app l i cab le   t o   t he  area of nuclear   reactors .  The minimax problem i s  
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converted t o  a l i n e a r  programming  problem by def in ing  a dummy variable 

which is. less than   t he  minimum of the distance  from the t r a j e c t o r y   t o   t h e  

danger   region  in  s ta te  space. The problem i s  t o   t h e n  maximize t h i s  

variable while obeying the dynamics equat ions  and  terminal   constraints .  

In   r e f e rence  4, H. C. Torng  works t h e  time optimal  problem f o r  a 

discrete   l inear   system. H i s  approach  varies  from  that  used  by Zadeh 

and  Whalen i n  the following way. Both  reports are concerned  with bounded 

control  magnitudes.  Torng  chooses a c e r t a i n  time in te rva l   and   ca lcu la tes  

t o  see i f  the re  i s  a f eas ib l e   con t ro l  fox t h i s  t ime  interval   such  that  

the  control  magnitude  remains  under a given  upper bound. I n i t i a l l y  

t h i s  i s  usua l ly   no t   the   case   for   the   chosen  time in t e rva l .  The time 

i n t e r v a l  i s  then  increased  and  the  procedure i s  r epea ted   un t i l  a feasible 

so lu t ion  for t he   con t ro l  i s  found f o r  a new time i n t e r v a l ,   [ t o , t f ] .  

This  smallest time i n t e r v a l   f o r  which a f e a s i b l e   s o l u t i o n   f o r   t h e   c o n t r o l  

e x i s t s  i s  then   the  minimum time and  the feasible con t ro l  i s  a minimum 

time c o n t r o l   f o r   t h e  problem.  Zadeh's  and  Whalen's  approach a l so   involves  

an   i t e r a t ive   t echn ique .  However, they  minimize  the  largest   absolute 

value  which  the  control must take  such  that  a cont ro l  i s  feasible. If 

a t  any   i n s t an t   i n   t he  time in t e rva l ,   t he   con t ro l  magnitude must be 

larger   than  the  given  upper  bound on the  control  magnitude,  then a longer  

time i n t e r v a l  must  be  chosen.  Repeating  the  procedure f o r   l o n g e r  time 

intervals   should  eventual ly  lead t o  a control  solution  which  remains 

within  specified  magnitude  bounds. 

- 

I n   r e f e r e n c e  5, M. O'Hagen uses a grad ien t   p ro jec t ion  method t o  

compute opt imal   t ra jector ies   for   both  l inear   and  nonl inear   systems.  

For nonlinear  systems, a technique i s  used i n  which  optimization  for 

the nonlinear  system i s  done by  opt imizing  recursively  for  a l i n e a r ,  

time varying  system.  Although  the method i s  qui te   genera l   in   the   range  

of  problems it can  solve,   convergence  difficult ies were encountered f o r  

some nonlinear  problems.  Furthermore,  because  the  gradient  of  the  cost 

func t iona l  i s  required,  no work was done f o r  problems i n  which the   cos t  

func t iona l  was t h e  time in te rgra l   o f   the   absolu te   va lue  of the   cont ro l .  

The gradien t   p ro jec t ion  method  worked b e s t   f o r   c o s t   f u n c t i o n a l s  which 

are quadrat ic   forms  in   the state and/or  control.  
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T. E. Bullock  and G. F.   Franklin treat the  computation of optimal 

con t ro l s  by a second-order  feedback method in   r e f e rence  6. A s  opposed 

to   o rd ina ry   g rad ien t  methods, they  minimize  the  cost  (augmented  with 

the  state  equations  by  the  Lagrange  Multiplier  Technique)  by  minimizing 

i t s  expansion t o  second-order terms i n   t h e   v a r i a t i o n  of the   cont ro l .  By 

l i n e a r i z i n g  a given  nonlinear  system  about a nominal t r a j ec to ry ,   t he  

minimiza t ion   process   to   f ind   the   var ia t ion   o f   the   cont ro l   can   be   handled  

by  solving a l inea r   quadra t i c  loss problem. Many systems may be solved 

using  this  technique  and  convergence to   an   op t imal  i s  usua l ly   rap id .  

However, t h e  method i s  not   sui table   for   minimizing  the  fuel   f rom  cold  gas  

jets.  I n   a r d e r   f o r   t h e  method t o  work, the f i rs t  and  second p a r t i a l  

der ivat ives   of   the   integrand of the   cos t   func t iona l   wi th   respec t   to   the  

con t ro l  and state must e x i s t .   I n   t h e   p r i n c i p a l  problems  considered  in 

t h i s   r e p o r t ,   t h e s e   d e r i v a t i v e s  do not   ex is t .  

In   re fe rence  7,  Dyer and McReJnolds develop  an  algorithm of com- 

puting  optimal  controls  by  extending  the  successive sweep  method. The 

dynamic  programming equation i s  expanded t o  second order  and  strong 

va r i a t ions   i n   con t ro l   a r e   cons ide red   t o   j o in   so lu t ions  of t he   r e tu rn  

function on e i t h e r   s i d e  of the   d i scont inui ty  of the  control .  From 

necessary  conditions,  one a r r i v e s  a t  an  algorithm  for  changing  switching 

times of the   cont ro l .  The method t r ea t s   t e rmina l   cons t r a in t s  on the  

s ta te   with  penal ty   funct ions.  The cont ro l   o f   the   sa te l l i t e   sys tem of 

t h i s  and  Hales'  report i s  so lved   i n   t he i r   r epor t .  The method,  however, 

i s  v e r y   s e n s i t i v e   t o   t h e   i n i t i a l   g u e s s  for t h e   c o n t r o l   h i s t o r y .   I n   f a c t ,  

when this  extended  successive sweep  method was performed  by Dyer and 

McReynolds u s i n g   f o r   t h e i r  nominal  the  control  which  Hales  and  Fliigge- 

Lotz  had  found as optimal  (with  cost  approximately 10 per  cent above 

t rue  opt imal) ,   the   solut ion  did  not   converge.  The report  does  include 

sufficiency  conditions  for  checking  optimal  controls.  

C. :CONTRIBUTIONS 

An i te ra t ive   t echnique   incorpora t ing   l inear  programming i s  developed 

such  that  high-order  nonlinear  systems  with  magnitude bounded con t ro l s  

en ter ing   the  state equat ions   l inear ly  and en te r ing   t he  performance  index 
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l i nea r ly   i n   t he   abso lu t e   va lue  of the  control  can  be  optimized  effectively.  

The technique,  which  gives  (locally)  optimal  open-loop  controls  and 

meets  terminal  constraints  "exactly", i s  shown t o  be r e l a t i v e l y   i n s e n s i -  

t i v e   t o   t h e  nominal c o n t r o l   h i s t o r y  and i s  shown t o  converge r ap id ly  

through  tests  performed on a s a t e l l i t e  system  described  by  Euler  Parameters. 

When compard wi th   i den t i ca l  examples t o   t h o s e  worked  by  Hales  and 

Fliigge-Lotz,  the  costs  obtained  by  this method a r e  between 10 and 1 5  per  

cent  lower.  While  both methods take  approximately 20 seconds  per   i tera-  

t i o n  on a modern computer,  Hales' method takes  20 o r  more i t e r a t i o n s   t o  

give a solut ion  while   the method of th i s   repor t   t akes   on ly   about   f ive  

i terations.   Although  O'Hagen's  gradient  projection method can  optimize 

nonlinear  dynamical  systems  with  respect to   severa l   d i f fe ren t   per formance  

indices ,  i t  i s  not  capable  of  solving  the minimum f u e l  problem. The 

second  order method  of Dyer and MeReynolds i s  much  more s e n s i t i v e   t o   t h e  

choice   o f   the   in i t ia l   cont ro l   h i s tory   than  i s  the method of t h i s   r e p o r t .  

Because cer ta in   necessary  partial de r iva t ives  do not  exist ,   the  second- 

order method of Bullock  and  Franklin  can  not  be  used when f u e l   c o s t  i s  

the  performance  index. 

Computer sub-programs t o  do l i n e a r  programming are   qu i te   s tandard  

and r ead i ly   ava i l ab le ,  making it easy   t o  implement the  algorithm of 

t h i s   r e p o r t .  

An approach to  solving  time  optimal  problems i s  a l so   descr ibed   in  

Chapter 6.  
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11. DEVELOPMENT OF TRE OPTIMAL CONTROL 

In   th i s   chapter ,   the   op t imal   cont ro l  of a general  non-linear, time- 

varying  system w i l l  be discussed.   Although  this   report  i s  concerned  with 

optimizing  such a sys t em  wi th   r e spec t   t o   t he   fue l  consumed by a con t ro l  

cons i s t ing   o f   gas   j e t s ,   i n i t i a l ly   t he   d i scuss ion  w i l l  be more general. 

O f  t h e   e n t i r e   c l a s s  of piecewise  continuous  functions  of  time  which 

cons t i tu te   acceptab le   candida tes   for   an   op t imal   fue l   cont ro l ,  a l l  but 

those   sa t i s fy ing  a r a t h e r   r e s t r i c t i v e  form as a function  of  time w i l l  be 

eliminated.  This i s  done  by  applying a c r i t e r i o n  developed  by L. S. 

Pontryagin  which  imposes a necessary  condition on the  form  which  an 

opt imal   solut ion may have. The chapter  ends  with a discussion  of  the 

construct ion of t he   con t ro l  and t h e   p o s s i b i l i t i e s  of a "s ingular"   control  

and  "indifference"  regions  in  the state space. 

A. PROBLEM FORMULATION AND THE mGULAR SOLUTION 

The dynamical  system s a t i s f i e s  a s e t  of d i f f e ren t i a l   equa t ions  

denoted as : 

x = - = f(x,g, t )  dx 
- "  

d t  

where x i s  an n- dimensional - 

(2-1) 

vec tor   re fe r red   to  as the  "state".  The 

independent   (scalar)   var iable  i s  time, t. The p-  dimensional  vector, 

u i s  the  control   and i s  t h e   v a r i a b l e   f o r  which a solut ion i s  t o  be 

found.  Each component of - u i s  constrained  in  magnitude  by  inequality 2-2. 
- J  

The time, t ,  i s  c o n s t r a i n e d   t o   s a t i s f y  

where t and t are given. The state a t  k t  i s  given as 
0 f 0 

x ( t  )=x 
0 0  

The s t a t e  a t  ktf i s  constrained  to   sat isfy  the  fol lowing  given r- 
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dimensional  vector  relationship: 

That  is,  there  are r relationships  between  the  n  components  of  the 

state  at  the  final  time.  The  problem  is  to  find - u(t) for  all 

t(t < t I t ) such  that  all  of  the  above  relationships  are  satisfied 
while  at  the  same  time  minimizing  the  scalar J, where J is  defined  as 

0 f 

J = sf fo(x,v,t)dt (2-5) 

The  technique  of  Lagrange  can  be  used  to  minimize J. Minimizing 

J subject  to  equation 2-1 is  equilvalent  to  minimizing J where n’ 

This  follows  because  the  second  term  of  equation 2-6 is  identically 
zero  from  equation 2-1. The  first  variation  of J with  respect  to  small 

variations  in - u must  be  zero  is  the  control  under  consideration  is  to  be 
a  candidate for minimizing J . Pontryagin  has  shown  that  this  necessary 

condition  on  the  first  variation  is  equivalent  to  maximizing a function 
commonly  referred  to  as  the  Hamiltonian  and  defined  as 

n 

n 

i= 1 

Maximization of H is with  respect  to - u. The XT(t) introduced  in 

equations 2-6 and 2-7 is  the  transpose  of an n-  dimensional  vector 
whose  components  are  referred  to  as  adjoint  variables,  sensitivity 

variables,or  Lagrange  Multipliers.  Components of the  adjoint  vector 

satisfy: 
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In this  report,  the  control  vector, 2, will  be  assumed  to  enter  the 
state  equations  linearly as in equation 2-9. 

It  will  be  assumed  from  now  on  that  the  p-  dimensional  control  vector 
has 3 components.  The  performance  index to be  minimized  is  total  fuel 

used by the  gas  jets. The  system  (satellite)  will  have  three  sets  of 

gas  jets---each  set  applying  torque  about  one  of  the  principal  axes 
of  inertia.  Therefore,  the  fuel  consumption  is  given as: 

3 

J =  r f  0" (x,u,t)dt = jf 1 d. J J  Iu. Idt 
to j-1 

Substituting  the  specific  form  of  the  state  equations  and  cost 

functional,  equations 2-9 and 2-10, into  equation 2-7 gives 

(2-10) 

Expanding H in  a  form  more  appropriate  for  applying  the  Pontryagin 
Principle  leads  to 

n 3 
m m 

3 
m 

H = >  Xi(t) 1 Cij(x,t)uj(t) - d. lu. I + terms  not  involv- 
j=1 j= 1 ing 2 

i= _I 1 Z J J  (2-12) 

Maximizing H with  respect  to  each  control  component  gives 
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(2-13) 

Because the  u . (t) are bounded  by inequa l i ty  2-2, the  form  of  the 
J 

con t ro l  which  maximizes H i s  

i= 1 

n 

(2-14) 

u . ( t )  = 0 
J 

A i ( t ) C i j ( x , t )  I C di j = 1;2,3 

i= 1 

This   func t ion   for   the  components  of - u i s  r e f e r r e d   t o  as a "coast  function" 

and gives   the  control  as a s e r i e s  of pu lses   wi th   in te rva ls  of  zero  control 

between  the  pulses.  (See  Fig. 2-1). The i n t e r v a l s  of  zero  control must 

be  non-zero in   du ra t ion  between  pulses of opposi te   polar i ty .   This  i s  

clear  from  equation 2-14 and   no t ing   tha t   the   ad jo in t   var iab les   a re  

continuous  functions  in  time. 

From expression 2-14 it i s  seen   tha t   the   op t imal   so lu t ion  would 

be t r i v i a l   i f   t h e  components  of - X ( t )  were known. Unfortunately, - A ( t )  

must  be found  by  the  simultaneous  solution  of  the n system d i f f e r e n t i a l  

equations  (eqn. 2-1) and the  n ad jo in t   d i f f e ren t i a l   equa t ions  (eqn. 2-8). 
This i s  d i f f i cu l t   because   t he  boundary  conditions  for  the 2n d i f f e r e n t i a l  

equations  are  given a t  two d i f fe ren t   t imes ,  t and tf. (More about   th i s  

two point  boundary  value i s  given i n  Chapter 2 of reference 19.) There 

have  been some a t tempts   to   re la te   the   t e rmina l   cons t ra in ts   (eqn .  2-4) t o  

the   so lu t ion  of the  adjoint   equat ions a t  t = . This i s  e s s e n t i a l l y   a n  

at tempt   to   convert   the  two point  boundary  value  problem t o   a n   i n i t i a l  

condition problem.  Simple  methods for   determining  the  adjoint   var iables  

0 
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Figure  2-1 

a t  t = t as a function  of  the state cons t r a in t s  a t  
0 

do not   in   genera l   ex is t .  

The important  point  derived  from  the  Pontryagin 

be used i n   t h i s   r e p o r t  i s  the  form  of  equation 2-14. 

t = t (eqn.  2-4) 
f 

P r inc ip l e  and t o  

That is, an  optimal 

c o n t r o l   f o r   t h e  problem  has  each  of i t s  components in   the   form of a 

"coast   function",   (f igure  2-1).  By l imi t ing   the   search   for   op t imal   cont ro l  

s o l u t i o n s   t o   t h i s  narrow c l a s s  of functions  the  problem becomes very 

much eas i e r ,   s ince  it i s  reduced t o  a minimization  over a f i n i t e  dimen- 

sional  parameter  space  rather  than  over a function  space. 

B. SINGULAR CONTROL 

Although it w a s  s t a t e d   i n   t h e  las t  s e c t i o n   t h a t  a necessary 

condi t ion   in   o rder   fo l  a g iven   con t ro l   t o  be a f u d  opt imal   control  was 

t h a t  it be i n   t h e  form of a "coast"  function,  there are except ions   to  

t h i s .  These  exceptloris  are  classified as s ingular   cont ro ls .  Mathemati- 

c a l l y ,  this means that  under  certain  circumstances,   the  Hamiltonian  has 
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a maximized value  which i s  independent   of   the   control   for   cer ta in   values  

of the  control   over  a c e r t a i n   t i m e .   I n   p a r t i c u l a r ,   f o r   t h e  problem 

being  considered  here, it i s  seen  from  equation 2-13 (and  remembering 

t h a t  d .  > 0, j = 1,2,3) t h a t  if 
J 

i= 1 

then H i s  maximized f o r  a l l  u .  where 0 I u . ( t)  5 U j = 1 , 2 ,  or 3. 
Likewise, i f  

J’ J 3’ - - 

i= 1 

then  the H i s  maximized f o r  a l l  u. (t) where -U 5 u .(t) 5 0, 

j = 1,2, or 3. 
J j J  

- - 
Johnson  and  Gibson  (reference 7) have  investigated  these  problems. 

A s  t h e i r  work rather  pessimistically  concludes,   singular  problems  are 

bes t   t r ea t ed   ve ry   spec i f i ca l ly ,   s ince  few general izat ions art. ava i l ab le  

even for   the  s imple  l inear ,   t ime-invariant   plants .   This   s tudy w i l l  not 

t r ea t   s ingu la r   con t ro l s   s ince ,  for the  vehicles  being  considered,  the 

control  devices  (such as gas   j e t s )   a re   e i ther   comple te ly  on or  completely 

off  and,  hence,  have no provis ions  to   generate   intermediate   control   levels .  

C. CONSTRUCTION OF THE CONTROL 

The most des i r ab le   so lu t ion  of t he  problem i s  t o  be a b l e   t o   g i v e  it 

i n  feedback  form.  That i s ,  t o   f i n d   f u n c t i o n s  of t h e   s t a t e   v a r i a b l e s ,  

such t h a t  
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would mean tha t   t he   i n s t an taneous   con t ro l   t o   app ly  would be known from 

the  instantaneous state. This is  present ly   impossible   except   in   very 

elementary  problems.  Thtre  are some techniques  which  attempt  to  give a 

feedback  form  of  solution  to  the  optimal  control  problem  by  choosing a 

form  of  the  feedback  function,  uj(x,t) ,  w i t h  s eve ra l  free parameters. 

These free  parameters are chosen i n  a manner to  optimize  the  system.  In 

c lass ica l   f requency  domain a n a l y s i s ,   t h i s  would essentiai ,y mean picking 

a f i l t e r  of ce r t a in   o rde r  and then  adjust ing  the  "poles   and  zeros"   to  

optimize  the  system. The method i s  rea l ly   jus t   another   sub-opt imal  

scheme, s ince i t  depends  on a somewhat a rb i t r a ry   cho ice  of the f i l t e r  

dynamic s . 
Here we shall   give  only  the  "open-loop"  control program, i .e.  

f o r  a g i v e n   s e t   o f   i n i t i a l  and  terminal  conditions on the   s t a t e ,  a 

g i v e n   i n i t i a l  and  terminal  time,  and a given  set  of  control  bounds, a 

t ime  funct ion  for   each  control   var iable  w i l l  be found  which  meets a l l  

cons t r a in t s  and  minimizes  the  cost i n  a "local"  sense.  This  optimal 

s e t  of  time  functions for the   cont ro l  w i l l  be a r r i v e d  a t  by   an   i t e r a t ive  

procedure i n  which  an i n i t i a l  guess  (nominal)  for  the  control,  which 

ne i the r  meets  the  terminal  state  constraints  nor  minimizes  the  cost  

funct ional ,   evolves   to   the  opt imal   solut ion.  A s  mentioned  above  the 

so lu t ion  w i l l  minimize the  cost   " local ly" ,  as opposed t o  "globally". 

This i s  because  the  algorithm  improves upon t h e   a r b i t r a r y  nominal  and 

w i l l  converge t o  a l o c a l  minimum.  The whole  space of possible   solut ions 

i s  not  searched. One can be reasonably   cer ta in   to   ob ta in   the   g loba l  

opt imal   solut ion  by  repeat ing  the  problem  for   several   radical ly   differ-  

e n t  "nominal" controls   and  observing  that   they do  converge t o   t h e  same 

optimal,   but no claim  of   global   resul ts  i s  made. 

D. m G I O N S  OF I N D I F F E R E N C E  I N  STATE SPACE 

I n   c e r t a i n  problems,  such as a s p i n n i n g   s a t e l l i t e ,  a desired 

physical   terminal   constraint  may have several  mathematical  equivalents. 

When the   t e rmina l   cons t r a in t   t o  be met i s  t h a t  a l l  motion  be  stopped  and 

a ce r t a in   o r i en ta t ion   be  met a t  t = t it may  make no phys ica l   d i f fe r -  

ence  whether one adds 2 s m ,  m = f 1, f 2, . . .  t o   t h e  state va r i ab le s  
f '  
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specifying  the  orientation.  Mathematically,  however,  whether  one . 

considers x(tf) = x  as the  constraint or x(tf) = x f 2nm as the 

constraint  may  make  considerable  difference  in  the  solution to the 
control  problem.  There  is  no  investigation  of  this  situation  in  this 

report. In order to  eliminate  the  possibility  of  this  difficulty, 

initial  conditions  will  be  chosen small enough.  The  initial  conditions 
will,  however,  be  much  too  large to allow  one  to  get  meaningful  answers 

by  linearizing  the  dynamical  equations. 

- f - f 
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111. __ SENSITIVITY "_" __ RELATIONS "" FOR THE TERMCNAL CONSTRAINTS 
~~ 

In   chap te r  11, it w a s  noted that t h e r e   a r e  a set of  terminal  con- 

s t r a i n t s  (eqn. 2-4) which must be s a t i s f i e d  by  the  s ta te   var iables  at 

t = tf. I n   t h i s   c h a p t e r ,   r e l a t i o n s  w i l l  be  derived  which show how 

var ia t ions   in   the   cont ro l   a f fec t   those   t e rmina l   cons t ra in ts .  

A s  w a s  previously  derived, the con t ro l  w i l l  be i n   t h e  form of 

pos i t i ve  and  negat ive  effor t   pulses   with  per iods  of   zero  control  between 

them.  Because the   cont ro l  i s  s t ruc tu red  as pulses ,  it can  be  determined 

for   each  instant   of   t ime,  t ,  by jus t   dec la r ing   the   va lue  of a f i n i t e  

number of "switching  times",  i .e.  values  which  give  the t i m e  a t  which 

the  control  changes  from "on" to   "o f f "  or vice  versa.  There w i l l  be 

N (an  even number) switching  times,  which means t h e r e   a r e  N/2 pulses 

of c o n t r o l   e f f o r t .  The switching  times  have  values t = T i = 1,2,...N, 
with Ti s Ti+l. This i s  i l l u s t r a t e d   i n   F i g u r e  3-1. 

i' 

U 

I Figure 3-1. Notation  For  Switching Times 

"" 

T T4 
I I 

T2 T 5 T6 T N - l  T t  N f 

Figure 3-1. Notation  For  Switching Times 

For   th i s   chapter ,  w e  sha l l   t r ea t   t he   con t ro l   vec to r  as having  only 

one  component. This i s  done t o  make matters  simpler  to  express  and 

s impler   to   understand.  

I n  det.ermining how small var ia t ions   in   cont ro l   a f fec t   the   t e rmina l  

cons t r a in t s , t he   so lu t ion   t o   an   equ iva len t  problem w i l l  su f f i ce :  how 



small variations in the  switching  times  affect  terminal  state  conditions. 

The approach  used  here  is  to  find  how a small variation  in  a  single 

arbitrary  switching  time  affects the.termina1 state.  Because  variations 

in  switching  times  are  to  be small, the  "Principle  of  Superposition", 

applies  approximately.  Hence,  the  net  variation  in  terminal  states  due  to 

variations  in  all  the  switcnirg  times  is  approximately  the  sume  of  the 

individual  variations  in  the  states  caused  by  the  variations  in  each  switch- 

ing  time. 

To find  the  approximate  variations  in  the  state  at  t = t due  to a f 
small change  in an arbitrary  switching  time, Ti, consider  the  two  state 

trajectories  shown  in  Figure 3-2.  

Figure 3-2. Variation  in  State  Due  to  Strong 
Variation  in  Control 

Curve A is  generated by the  system  as  the  result of a  control  with 

switching  time  at t = T Curve B is  identical  to  Curve A with  the 
exception  that  the  switching  time  originally  at t = T now  occurs  at 

t = Ti + 6T . By  fitting  linear-approximations  to  the  trajectories i 
A and B, it  is  seen  that 

i' 

i 
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-A x and x is a notation  for  the  state  along  trajectories A and B 
-B 

respectively.  Since for small 6Ti the  left  side  of  equation 3-1 
can  be  written  approximately  as 6x(T.) one  obtains 

1 

Notation for z(z,u(<) - ,Ti) has  been  reduced  to - @(Ti). 
The  variation in the  state at  the  final  time, 8x(tf),  is  related 

to  the  variation in the  state  at  t = TiJ6x(Ti) , by  equation 3-3. 
6E(tf) = (tf JTi)6x(Ti) (3-3) 

@(tfyTi)  is  called  the  "transition  matrix" o r  the  ."fundamental  matrix". 

It is an n  x  n  matrix  which  satisfies  the  following  vector  differential 

equation  and  boundary  equation. 

i(tf,t) = -@(tfyt)F(t) 

(3-4) 

F(t)  is a  matrix of the  various  partial  derivatives  of I f(x,z,t) with 

respect  to - x. I is  the  identity  matrix.  More  about  equation 3-4 

will be  found  in  Chapter 5, where  it  will  be  needed  as  part of the 
solution  to  the  satellite  problem.  More  material on transition  natrices 

is  available  in  reference [ll] . 
Substitution  of  equation 3-2 into  equatfon 3-3 gives: 

. When  there  is  more  'than  one  switchiig  time  which  has  a  change 

associated  with  it,  the  change in the  final  state  is  the  composite 
effect  of  the  cha.nges  in  all  of  the  switching  times.  That  is,  if  each 

switching  time, Ti, i = 1,2,. . .N undergoes  a  va.riation, &Ti, i = 1,2,. . . N  

then 6x(tf) - is  formed as 



This is  merely a summation  of  terms  appearing  in  equation 3-5. 
For the  trajectories  given  in  Figure  3-2,  it  is  not  necessarily 

true  that $[x(tf)] - (eqn. 2-4) is  equal  zero. For each  of  the  trajector- 

ies,  we  will  subscript $[x(tf)] to  indicate  on  which  trajectory  it  is 

evaluated  at  t = t  Then,  by  definition, f' 

6$[X(tf) - 1 = g[x(t,) IB - k[x(t f A  1 1  ( 3 - 7 )  

To a first  order  approximation, 

where Jix[x(tf)]  is an r x  n  matrix  of  partial  derivatives. In parti- 

cular,  the  element  in  the i- row and j- column of $ is &ri 

(evaluated  along  trajectory A). From  equation 3-6, 
3-7, and 3-8 we  determine  by  appropriate  substitution  that  the  variation 
in ~i at  t = t Q[x(t )I, is  given  as  in  equation  3-9. 

th  th 
X - 

ax 

f' - f  

If the  specific  form  of  the  state  equations,  equation 2-9, is 
substituted  in  equation  3a9,  the  expression for 6$[_x(tf)] is modified 

to 

(3-10) 

J 

Cb,t) is  the n x  p  dimension  matrix  whose  components  are  the 

C. . (x,t)  of  equation 2-9. 
1 J  - 

Expression  3-10  is  rather  long  and  contains  notation  which,  though 

necessary,  could  induce  the  reader  to  miss  an  important  point.  Therefore, 

equation 3-10 will  be  rewritten  using  coefficients  a  where  a 

is  the j- element  in  the  vector  which  is  formed  as  the  product  of  the th ji'  ji 
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matrices  and  vectors  in  equation 3-10, Specifically, 

a = the j- element  of  the  vector th 
ji 

j = 1,2, ... r 
Equation 3-10 can  be  expanded  to  scalar  form  to  obtain 

(3-11) 

(3-12) 

In summary, one  sees  from  equation 3-12 that  the  variation  in  the 

J- component of the  terminal  constraint, 89[x(tf)],  due  to small . th 

variations  in  all  of  the  switching  times  in  Figure 3-1 is  just  a  linear 

combination  of  the  variations  in  the  switching  times. 



I V .  AN ITERATIVE TECHNIQUE OF IMPROVING T€IE 

CONTROL SOLUTION BASED ON LINEAR PROGRAMMING _ _ _ _ _ _ _ _ ~ ~  

In   chapter  11, it w a s  mentioned tha t   t he   op t ima l   so lu t ion   fo r   t he  

con t ro l  would evolve  from a nominal (guess) f o r   t h e   c o n t r o l  which n e i t h e r  

sat isf ied  the  terminal   s ta te   requirement   nor   minimized  the  cost   funct ional .  

In   t h i s   chap te r ,   t he   de td i l s   fo r   t h i s   i t e r a t ive   t echn ique  w i l l  be  deGeloped. 

The r e s u l t s  of Chapter I11 w i l l  be  used as a n   i n t e g r a l   p a r t  of the  follow- 

ing  discussion. 

In   F igure  4-1, a typ ica l   con t ro l   h i s to ry  for a l l  three components of 

the   cont ro l   vec tor  i s  shown. A s  i n  Chapter 111, t h e r e   a r e  s t i l l  N 

(even number) switching  t imes,   leading  to N/2 pu l ses   d iv ided   a rb i t r a r i l y  

between  the  three  control components, with N l / 2  (N2-N1)/2, and 

and (N-N !/2 pulses   associated  with u (t), u 2 ( t )  and u3( t )   respec t ive ly .  

The in i t i a l   pu l se   a s soc ia t ea   w i th   each   con t ro l  component may be e i t h e r  

pos i t i ve  or negative. The basic  configuration  of  Figure 4-1 w i l l  be  used 

for  the  control  throughout  the  remainder of t h i s   r e p o r t .  

2 1 

I U 
1 

I n 

" "  'N2 - 1 T N2 tr t" 

TN-l TN 
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A. THE FUEL COST 

I n   t h i s   s e c t i o n   t h e   c o s t ,  J, and  the  var ia t ion  of   the  cost ,  

6J, w i l l  be w r i t t e n   i n  a form a p p r o p r i a t e   t o  be  used  with  l inear  

programming. 

From the  second  chapter, one r e c a l l s   t h a t   t h e   f u e l  consumption w a s  

given as 

Th i s   cos t   i n   fue l ,  J, can be expressed as a summation over  the  switch- 

ing  times as i n   e q u a t i o n  4-2. 

Equation  4-2  follows  from  expression 4-1 e a s i l y  if one r e f e r s  t o  

Figure 4-1 and  observes  that  the  integrand i s  constant  between  switching 

times . 
The next  point t o  consider i s  the   var ia t ion ,  6J, i n   t h e   f u e l   c o s t .  

From equation 4-2, t h e   v a r i a t i o n   i n   f u e l ,  6J, can be seen   t o  be a sum 

of the  var ia t ions  in   switching  t imes STi, i = 1,2, ... N 

i=l i = N  /2+1 
1 
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Geometr ical ly ,   th is  i s  represented  in   Figure 4-2, where t h e   a r e a  

(propor t iona l   to   fue l )   under   the   o r ig ina l   pu lse  i s  Uj(TZi-Teim1) and 

i s  r ep resen ted   by   ve r t i ca l   l i nes .  The area  under   the new pulse (after 

varying  the  switching times) is  Uj 1 (T2ii"2i) - (T2i-l&T2i-l) 1 
and i s  represented   by   hor izonta l   l ines .  

T2i+6T2i t+  

Figure 4-2. Variat ion  in   Fuel  Due to   Var ia t ions  i n  
Switching Times 

Hence the change i n   a r e a   ( f u e l ) ,  SAareay i s  the  difference  between  the 

areas  and i s  given as 

Equation 4-3 i s  made of  the  terms of equation 4-4, but  weighted  With 

dl, d2 or d3 - 
Equation 4-3 i s  the main r e s u l t  o f  t h i s   s ec t ion ,  It gives  the 

v a r i a t i o n   i n   t h e   f u e l  consumption as a l i n e a r  combination in   the   swi tch-  

ing  times. 

The approach to   f ind ing   the   op t imal   cont ro l  i s  t o  lower the   cos t  

J, (eqn. 4-2) i n  a step  by  step  fashion.  This  can be  done by  minimizing 
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t h e   v a r i a t i o n ,  8J, of  equation 4-3. However, on2 does  not  want t o  

indiscriminately  minimize 6J. Minimization  of 85 without   constraints  

on the  independent  variables would o f t e n  be  meaningless  because  solutions 

f o r   t h e  8Ti, i=1,2,. . .N and 8J would be unbounded. Therefore, 

s e v e r a l   c o n s t r a i n t s  w i l l  now be imposed. 

B. FINAL VALUE CONSTRAINTS 

The first cons t r a in t  has t o  do w i t h   t h e   v a r i a t i o n s   i n   t h e   s t a t e s  a t  

t=tf which  were  dkveloped i n   t h e  last  chapter.  Equation 3-12 i s  

r ewr i t t en   he re   ( i n  expanded  form) as equation 4-5 so t h a t  it can be put 

in   p roper   contex t   wi th   the   so lu t ion . to   the   op t imal   cont ro l  problem. 

6ql = a116T1 + a 6T + . . .alN8TN 12 2 

8q = a 6T + a 6T2 + ... a 6T r rl 1 1-2 rN N 

If 6q1, ... 6qr are spec i f i ed ,   t hen   va r i a t ions  of  STi, i=l. . . N  a r e  

l imi t ed  so tha t   equa t ion  4-5 i s  s a t i s f i e d .  

C. LINEARITY CONSTRAINT 

The nex t   cons t r a in t   i n   t he  problem so lu t ion  i s  c a l l e d   t h e   l i n e a r i t y  

cons t r a in t .  The v a l i d i t y  of equation 4-5 depends  on the   va r i a t ions  of t he  

switching times, 6Ti, i=1,2,. . . N  being'small .   For  equation 4-5 t o  be 

s t r i c t l y   t r u e ,   t h e  6Ti should be in f in t e s ima l ly  small. This  follows 

beaause  the  coeff ic ients  of &Ti, i .e. a contain  terms  from  the  trans- 

i t i on   ma t r ix  which  involved a l i n e a r i z a t i o n   i n   e q u a t i o n  3-4. Equation 

3-2  and i t s  inhe ren t   l i nea r i za t ion  i s  another  reason  which  invalidates 

equation 4-5 f o r   l a r g e  8Ti. 

j i '  

I n   t h i s   r e p o r t ,   t h e  STi, i = l . . . N  a re   l imi ted   to   remain  small by  the 

simple  magnitude  inequality on ETi as g iven   i n   i nequa l i ty  4-6. 

Mathematically,   inequality 4-7 i s  equvalen t   to  4-6, bu t   s impl i f ies  
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matters computationally. 

ETi 5 ai 

6Ti 2 -ai 

ai > 0 ,  i=l.. .N 

The 2 N  ' inequal i t ies   o f  4-7 c o n s t i t u t e  what i s  r e f e r r e d   t o  a t  the 

beginning  of   this   sect ion as t h e   l i n e a r i t y   c o n s t r a i n t .  

D. SWITCHING SEQUENCE CONSTMINT 

If, in   the   course  of varying  the  switching  t imes of t he   con t ro l   i n  

Figure 4-1, one  were t o  move T1, such  that  T > T2, t h e   r e s u l t  would 

be  ambiguous. I n   t h i s   s e c t i o n  on switching  time  sequences,  the  mathemati- 

c a l   c o n s t r a i n t s  which  prevent  such  situations  from  occuring w i l l  be 

developed. 

1 

By r e f e r r i n g  t o  Figure 4-1 and  applying  the  idea  of  the l a s t  para- 

graph,   inequal i ty  4-8 follows. 

Ti-l S Ti i=2,3,4 ,... N1 

T 5 T j=Nl+2,  N +3. ..N2 j-1 j 1 (4-8) 

Tk-l I Tk k=N2 + 2, N2 + 3 . . .N  

Furthermore, one  does  not  want any switching time t o  be sh i f ted   ou ts ide  of 

the  t ime  interval  of  the  problem, [to,tf]. This i s  formalized  by 

inequa l i ty  4-9. 

T1 2 t 
0 

T N 2 + l  ' 0  

TN1 ' ?? 
T s t  F N2 

(4-9) 
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All of the  remaining  switching times are impl ic i t ly   cons t ra ined   to   be  

i n   t h e   i n t e r v a l  of time, [to,tf]. This  can be reasoned  by  applying 

inequa l i ty  4-8 in   conjunct ion   wi th  4-9. 
The next   s tep i s  t o   c o n v e r t   r e l a t i o n s  4-8 and 4-9 i n t o   r e l a t i o n s  

among t h e   v a r i a t i o n s  of the  switching  times, 6Ti. To accomplish  this,  

add i t iona l   no ta t ion  i s  introduced.  Imagine  that   the  switching times, 

Ti, id.. . N  are assigned  values 
Ti , i=1,2, ... N and that   the   system 

equations,  2-1, are  then  solved f o r  the state, - x ( t ) ,   u s i n g   t h e   c o n t r o l  

result ing  from  these  switching  t imes.   After  this  computation,  the 

switching  times may later be s h i f t e d   t o  new va lues ,   ca l led  Ti , 
i=l.. .N. The amount that   each  switching time i s  var ied i s  6T i=l.. .N. 

Equation 4-10 then   re la tes   the   o ld   swi tch ing   t imes   to   the  new switching 

times. 

o l d  

new 

i' 

Ti = Ti + 6Ti i=1,2, .  . . N  
new old 

(4-10) 

It w i l l  be  assumed t h a t   i n e q u a l i t i e s  4-8 and 4-9 hold for the  old  switch- 

ing  t imes,  , i = l . . . N .  Presently,  requirements on the   var ia t ions  

of the  switching times such   t ha t   r e l a t ions  4-8 and 4-9 hold   for   the  new ' 

switching  times, i=1,2,. . .N w i l l  be  found. 

Ti ol d 

Ti new 
Because the  sequencing  constraint  of t h i s   s e c t i o n   r e q u i r e s   t h a t  

r e l a t i o n s  4-8 and 4-9 a r e   v a l i d   f o r  Ti , i=1,2,  ... N i n e q u a l i t i e s  

4-11 and  4-12 follow. new 

Ti-l 
s Ti ; i=2 ... N1 

new  new 

T s T ; j = N  +1 N +3,...N2 
j -'new j new 1 1 

Tk-l < T ; kN2+2, N2+3, ... N 
new  knew 

T1 to new 

TNl +1 2 t  
0 

new 

(4-11) 

(4- 12) 

(continued) 



TN2 +1 r t  
0 

new 

T 
N2 * tf 

new 

Rela'cions 4-10 i s  now s u b s t i t u t e d   i n t o  4-11 and 4-12 t o   o b t a i n  

expressions 4-13 and 4-14. 

Ti-l old 

T 
j -'old 

T k - l o l d  

+ 6Ti,l Ti + 6Ti; 

+ 6T - 
j -1 'old 3' 

o ld  

+ 6 T  S T  

+ 6Tk-l Tk + 6Tk; 
old 

T1 +6T 2 t  
old 1 . 0  

TN1+l 
o l d  

+ 6T N2+1 ' to 
old 

T -k 6T 
N1 * tf 

N1old 

T -I- ET tf 

N201d N2 

(4-12) 

k 2 . .  .N 

j=N1+2, N +3,. . . 1 . .  (4-13) 

k=N 2 +2,. . .N 

(4-14) 
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. 

Relations 4-13 and 4-14 can  now 
variables, 6Ti, appear on the  left 
4-15 and 4-16 result. 

6Tk,l - ETk S Tk - T  
old k-lold' 

-6T 5 T - t  
l o l d  0 

be  rearranged so that  the  independent 
side. If this is done,  inequalities 

i=2,3,. . .N1 
j=N +2,. . .N2 1 

k7N2+2, ... N 
(4-15) 

(4-16) 

6T S tf - T 
N1 N2 old 

8T S t  - T  
N2 N2 old 

STN S tf - T 
Nold 

Inequality 4-15 and 4-16, similar  to  equation 4-5 and  inequality 
4-7, constitute  the  last  of  the  necessary  constraints  to  make  the solu- 
tion  to  the  control  problem  meaningful. 

E. TRANSLATION OF VARIABLES 

In the  linear  programming  algorithm  discussed  in  Appendix B, all 
of  the  variables  for  which  a  solution  is  being  sought  are  constrained 

to  be  non-negative. In the  control  problem,  it  is  necessary  to  consider 

both  positive  and  negative  values of the  independent  variables, 
ETi, i=l...N. To fit  the  control  problem  into.  the  context of the  Simplex 

linear  programming  algorithm,  it  is  necesshry  to  define  new  variables 



related  to 

ne  gat  ive . 
each 6Ti. 

6Qi = 

the ETi,, i=l...N such  that  these  new  variables  are  non- 

A simple  and  successful  approach  is  to  just  add  constants  to 
Define 6Qi, i=l.. .N by equation 4-17. 

6T. + Ai; Ai > 0 i=l...N 
1 (4-17) 

By choosing  each Ai such  that Ai 2 Max [&Til ,6Qi is constrained  to 

be  non-negat  ive . 
In this  section  the  results  af  the  previous  sections  are  converted 

into  equivalent  statements  about  the  new  variables  6Qi, id.. .N. 
The  variational  cost, 6J in equation 4-3 can  be  represented  as 

in  equation 4-18 if  equation 4-17 is  substituted  in  equation 4-3. 

i=l 

(4-18) 

The 6Qi, i=l,2,. . .N which  minimize BJ in  equation 4-18 also 
minimize 6J' in  equation 4-19 because  the 6J and 6J' differ  only by 

an additive  constant  which  is  not  a  function of the  SQi. 

+ f' d 3 3  U (6Q2i - 6Q2i-1 1 
i=(N2/2)+1 
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Hence,  the  procedure  of  solution  now  involves  minimization  of 6J' 

with respect  to  the 6Qi, i=1,2 ... N. The  constraints  (expressions 4-5, 
4-7, 4-15, and 4-16) to  which  this  minimization  is  subject  will  now  be 
converted  into  equivalent  statements  involving  8Qi  rather  than STi. 
Only  the  results will  be  given.  Details  may  be  easily  verified  by  the 

reader by substitution  of 

and 4-16. 
Equation 4-5 becomes 

equation 4-17 into  expressions 4-5, 4-7, 4-15, 

equation 4-20. 

N 

1N  N li i 
i= 1 

al16Q1 + a126Q2 + . . .a SQ = a A + Sql 

N 
a SQl + ar26Q2 + ... a rl rNSQN = &riAi " 

i= 1 

Inequality 4-7 becomes 4-21. 

SQi a. + Ai 
1 

i=1,2,. . .N 
SQ. 2 -CY. + A 
1 1 i 

And  inequalities 4-15 and 4-16 become  inequality 4-22. 

"i-1 - SQi g (Ti - Ti,l ) + Ai - 1- Ai; i=2,3.. . N1 
old  old 

-SQ7 s T1 - to - A1 
old 

-'% +1 TN1+lold o 'N1+1 - t  - 
i 

(4-20) 

(4-21) 

(4-22) 

. . .N2 

. . . N  

-6QN +1 5 T - t  
2 N201d 0 - %T2+1 

(continued) 



SQ 5't - T  
N1 f 

+ 
N1old 

SQ I t  - T  + 
N2 f 

N201d 

SQN 5 tf - T + 
Nold 

The con t ro l  problem 

of 6J' (equ-ation 4-19) 
4-21,  and 4-22. This i s  

4v 1 

A 
N2 

*N 

(4-22) 

has now been  reduced to   f inding  the  minimizat ion 

subjec t   to   the   cons t ra in ts  of expressions 4-20, 

the  precise  form of t h e   l i n e a r  programming 

problem  which i s  ou t l ined   i n  Appendix B. In   the   next   sec t ion ,  a general  

discussion w i l l  g ive   t he   ove ra l l   p i c tu re s  of how this  computational  algorithm 

i s  implemented i n   t h e   s o l u t i o n   t o   t h e   c o n t r o l  problem. 

F. COMPUTATIONAL  CONSIDERATIONS 

This   sect ion  descr ibes  how the  ideas  developed so far i n   t h i s  

r epor t  may be used t o  compute minimum f u e l   c o n t r o l s  for s a t e l l i t e s .  

One f i rs t  chooses a con t ro l  which i s  s t ruc tu red  as i n   F i g u r e  4-1. 
The switching times, Tiy i=1 ... N, are chosen  arbitrari ly, .   but,  as w i l l  

be  elaborated  in  the  next  chapter when t h e   a c t u a l   s a t e l l i t e  problem i s  

solved,  discriminate  choice  normally  guarantees a f a s t e r   s o l u t i o n .  Next 

the  system  equations, 2-1, are   in tegra ted   f rom t = t t o  t = t 

During t h i s   i n t e g r a t i o n ,   t h e r e  must  be provis ions   for   s tor ing   the   t ime 

h i s t o r y  of the   s ta te   vec tor .  Next, t he   t r ans i t i on   ma t r ix ,  @ ( t f , T i )  i s  

evaluated at each  switching  time.  This i s  accomplished  by  integrating 

equations 3-4 backward  from t = t t o  t = t . With  these  integrat ions 

performed,  the aij, i=1,2 ... Ny j=l,2,...r in   equa t ion  4-20 can  be 

evaluated. 

0 f '  

f 0 

The next   s tep i s  the   s e l ec t ion  of t he  6$ , j = 1,2,...~ in   equa t ion  
-j 

4-20. Since  the  desired  terminal   s ta te   in   the  control   problem i s  t h a t  

9 [ z ( t f ) ]  = 0 and  because we normally w i l l  n o t   s a t i s f y   $ [ x ( t   ) ]  = 0 

wi th   an   a rb i t r a r i l y   p i cked   con t ro l ,  one  chooses Skj, j = 1,2,.. .r  such 

t h a t   t h e   c o n s t r a i n t  i s  more n e a r l y   s a t i s f i e d  on the   next   i t e ra t ion .   In  

p a r t i c u l a r ,  one u s u a l l y   s e t s  &Jj such  that  6$ = -$ .[fi(tf)], j = 1,2,. . .r. 

- f  

-3 "J 
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Values must now be chosen for CY and A i = 1,2,.. .N. When i i' 
choosing  these  parameters, one s impl i f i e s   t he  problem  considerably  by 

choosing A such  that  
i 

Ai = Q! i=1,2, ... N 
i 

From the  second  par t  of expression 4-21, it becomes c l e a r  

are  chosen  equal  to  the a.6 The second p a r t  of equation 

be w r i t t e n  as 
1 

SQ. = 0; i=1,2,. . . N  
1 

why the Ai 

4-21  can  then 

This   constraint  i s  now el iminated  f rom  the  l inear  programming problem 

because it i s  a r e s t r i c t i o n  which i s  impl ic i t ly   incorpora ted   in   the  

l i n e a r  programming algorithm,  i.e.,  a l l  independent   var iables   are  non- 

negative. The l i n e a r  programming  problem  statement i s  thus  shortened  by 

N equations  and N s lack  var iables .   (Slack  var iable   are   discussed 

b r i e f l y   i n  Appendix B.) 

With a l l  coef f ic ien ts   eva lua ted ,  6J' of equation 4-19 i s  minimized 

subject   to   expressions 4-20,  4-21,  and  4-22  by  using a s tandard   l inear  

programming technique. The so lu t ion  i s  given as non-negative  values  for 

t he  8Q. i=1,2, ... N. The  6Ti are  found as 
1 

8 ~ ~ . =  8Qi - Ai, i = l , Z ' , . - . N  

The switching  times  are  updated as 

Ti = Ti + 8Ti; i=1,2,. . .N 
new old 

(4-23) 

The whole  process i s  repeated  using  the new switching  t imes  for   the 

control .  Normally, Jnew w i l l  be less than Jold. Ideal ly ,   the   termin-  

a l  cons t r a in t s  on the  state, 3[x(tf)] should be s a t i s f i e d .  Because  of 

the   inaccurac ies   in t roduced   by   l inear iz ing   the   sens i t iv i ty   equat ions ,  

ob ta in ing   3[x( t  ) ]  0 would be exceptional on the  f i r s t  i t e r a t i o n  of t h e  

t o t a l   s o l u t i o n .  
- f  

Normally after a f e w  i t e r a t ions   t he   con t ro l   conve rges   t o  a so lu t ion  

which  minimizes   the  fuel   cost   ( local ly)   and satisfies t h e   s t a t e   c o n s t r a i n t s  
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at  t = t When the   cos t   can  no l m g e r  be  improved s i g n i f i c a n t l y ,   t h e  

procedure i s  terminated. 
f '  

Although one i s  not  here  confronted w i t h  t h e  common problem  of t ak -  

ing  the  inverse  of  matrices  which  tend  toward  singularity as the  t ime 

t approaches a c e r t a i n  amount of  care must be  taken  against   the  

p o s s i b i l i t y  of " in feas ib l e   so lu t ions" .   In feas ib i l i t y  means t h a t  no 

s o l u t i o n   f o r   t h e  6Qi may e x i s t  which s a t i s f i e s   t h e   c o n s t r a i n t s  of 

expressions 4-20, 4-21,  and 4-22. What th i s   u sua l ly   imp l i e s  i s  t h a t   t h e  

Ai, i=l,2y...N  have  been  chosen so small tha t   equa t ion  4-20 can  not  be 

s a t i s f i e d   f o r   t h e   g i v e n  &Jj, j=l ,2, . . . r .   This is only a minor  problem 

and was only  rarely  observed  in   s imulat ion.  It can  be  corrected  by 

proper  compensation in   t he   cho ice  of t he  Ai, i d , Z  y...N and  a lso 

tf 

j = l Y 2 , .  . .r. 
I n   t h e   n e x t   c h a p t e r   t h i s   m a t e r i a l  w i l l  be   appl ied  to   the  general  

s a t e l l i t e  system. 
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V. HIGH TORQUE ACQUISITION PROBLEM 

In   th i s   chapter ,   the   p rocedure   d i scussed   in   the  las t  chapter w i l l  

be   appl ied   to  a system of d i f fe ren t ia l   equa t ions   descr ib ing   the  a t t i -  

- tude  motion of a satellite i n   o r b i t   a b o u t  a f ixed  body  such as the   ear th .  

Because of the   h igh   cont ro l   to rque   leve ls ,   the   e f fec ts   o f   the   g rav i ty  

gradient  and o r b i t a l  motion are neglected  from  the  dynamics  equations. 

The purpose i s  to   construct   an  on-off  time h i s to ry   fo r   t , he   gas   j e t  

a t t i t u d e   c o n t r o l l e r s   s u c h   t h a t   t h e   s a t e l l i t e   a c q u i r e s  a des i red   o r ien ta-  

t i o n  and  spin  rate a t  a given  time, t f J  in   t he   fu tu re .   Seve ra l  examples 

a re   i l lus t ra ted   a long   wi th   compar isons   to  similar r e s u l t s  of other  people. 

A. HIGH TORQUE DYNAMICS AND SENSITIVITY  EQUATIONS 

The dynamics  equations t o  be  used f o r   t h e  examples  of th i s   chapter  

are   given by expression 5-1. 

x = u  1 1 - Kxx2x3 

X = U  - K X X  2 2 y 1 3  

x = u  3 3 - KZX1X2 

x4 = (x5x3 - X6X2 + x x )/2 7 1  

Equation 5-1 follows  from  equations A - 2 5  i n  Appendix A i f  t he   g rav i ty  

gradient  terms  and  terms  involving  the  rotation of the   o rb i ta l   re fe rence  
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frame  are  dropped  and i f  t h e  W are defined as i=l,. . .4. 
Because the   con t ro l   t o rque   l eve l s  are h i g h   r e l a t i v e   t o   t h e  terms involv- 

i ng   g rav i ty   g rad ien t  and  because  the  rotation of the o rb i t a l   r e f e rence  

frame i s  neg l ig ib l e   i n   t he   t ime   i n t e rva l   o f   con t ro l ,  tf - to, these 

omissions are reasonable.   Since  the  orbital   parameters do n o t   e n t e r   i n  

these  abbreviated  high  torque  equations,   the l a s t  two d i f f e r e n t i a l  

equat ions  in   equat ion A-26 are  unnecessary. 

i 

Although  there   are   seven  different ia l   equat ions  in   equat ion 5-1, 
there   a re   on ly   s ix   independent   s ta tes .  y-i can be expressed 

of  the  other components  of the   s ta te   by   equat ion  5-2. 

i n  terms 

(5-2) 

From equation 3-4, one  of t he   s t eps  i n  applying  the  algorithm of 

Chapter 4 involves   the  integrat ion of a mat r ix   d i f fe ren t ia l   equa t ion .  

The expanded version of t h i s   equa t ion ,   i n  component form, is: 

b 
0 

k= 1 j=1,2,. . .6 
(5-3) 

The boundary  conditions  for  equation 5-3 a r e  

The c o e f f i c i e n t s  of equation 5-3 a re   g iven  as  

where fk(X(t),gJt) i s  the k- component  of equation 2-1. Applying 

t h i s   t o   t h e   s p e c i f i c  dynamics of equation 5-1, t he  F ( X ( t )  , t) , 
k=l,2,. . .6 j=1,2,. . .6 are   given by  matrix  equation 5-4. 

th 

kj 

(continued) 
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-K X 
-K X 1 x 3  x 2  

-KZX1 I O I O I  0 

-'6 5 X -x x x -x x 14 
5 

3 1 5  

XI 
E"-, -x4 -x3-x2x4 -x x 

- 5 5 
- 

x4 X x -x x -x  -x x 7 2 3 4  1 3 5  

9 9 

6 

-x x 3 6  

x7 

The examples  worked in   the   fo l lowing   sec t ions  of th i s   chapter   use  

satel l i te   parameters   based on a preliminary model  of the OGO spacecraf t  

descr ibed  in   ( reference 1 2 ) .  The  moments of i n e r t i a  of 

2 
I -= 800 s l u g - f t  

X 

a r e   equ iva len t   t o   t he   i ne r t i a   pa rame te r s  

K = . E O  
Y 

B. IWMERICAL EXAMPLES 

I n  th i s   sec t ion ,   op t imal  fuel con t ro l s  for t h e   s a t e l l i t e  system 

described  by  equation 5-1 will be determhed  by  the  a lgori thm  descr ibed 
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i n  Chagter 4 for d i f - f e ren t   s e t s  ox i n i t i a l   c o n d i t i o n s  on the  state 

(xo)-,  time  intervals (tf-to) , and cont ro l   angular   acce le ra t ion   leve ls ,  

(U.). Comparisons w i l l  f requent ly   be  made between  these results and the  

corresponding  results  of  examples worked  by Hales and  Fliigge-Lotz i n  

(reference 1) . 
1 

The examples i n   t h i s   c h a p t e r  have f i n a l   v a l u e   c o n s t r a i n t s  on a l l  s i x  

of the  states*.  With  tahe  exception of t he  l a s t  example,   the  f inal   value 
c o n s t r a i n t s   a r e  - x ( t f )  = 0. This means tha t   in   equa t ion   2-4 ,   . the  

r-dimensional  $[x(t ) ]  becomes the 6 dimensional   vector ,   x( t f ) .  

Likewise, qX =-I and 6$ - of equation 4-5 becomes 6 z ( t f ) .  
f - 

Table 5-1 gives   three sets of illitial conditions  used  in  the  examples 

along  with  other  pertinent  information. B ( t  ) gives  the  ”equivalent 

rotation”  defined  by  the  Euler  Parameters (Appendix A ) .  
0 

I n   t h e   f i r s t  example, t h e   i n i t i a l   c o n d i t i o n s  R - 1  in   Table  5-1 a r e  

used. The f ina l   t ime ,  t f ,  i s  taken as 60 seconds  and  the  control  accel- 

e r a t ion   l eve l s   a r e   s e . t  a t  .412  degrees/sec.2  for  each component  of t he  

cont ro l .   In   F igure  5-la and 5-lb, t h e   s t a t e   t r a j e c t o r i e s  are i l l u s t r a t e d  

f o r   t h e  nominal cont ro l   wi th   four   pu lses   for   each   cont ro l   var iab le .  

Figures 5-2a  and  5-2b depict   another  nominal  control  history  with  six 

pulses   for   each  control   var iable   a long  with  the  corresponding  s ta te  

t r a j e c t o r i e s .   I n   b o t h   c a s e s ,   t h e   l i n e a r  programming procedure  described 

i n  Chapter 4 yields   the  opt imal   control  and t r a j e c t o r i e s  of Figures 

5-3a and 5-3b af ter  f i v e   i t e r a t i o n s  of  computation. Only two pulses 

for   each   cont ro l   var iab le   a re  needed for   the   op t imal   cont ro l   h i s tory  i n  

Figure  5-3a;  the  other  pulses  tended  to  zero  width and  hence,  give no 

cont‘ribution t o   t h e   c o s t .  The cos t  of t h e   f u e l   i n   t h i s  example i s  .131 see 

as compared t u  a cos t  oi’ .162 see. computed by  Hales  and  Fliigge-Lotz f o r  

t he   i den t i ca l   s i t ua t ion .   In   ( r e fe rence  .(), Dyer and McReynolds work t h i s  

example  and ge t  a s o l u t i o n   i d e n t i c a l   t o   t h e  one  of t h i s   r epor t .   The i r  

method also  gives   suff ic iency  condi t ions  to   guarantee  local   opt imal i ty ,  

-1 
-1 

*Str ic t ly   speaking ,   there   a re   on ly   s ix   s ta tes   because  5 is  
an   “ in tegra l  of motion”  by  equation  5-2. 
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Run  Number 
_ _ ~ ~  " 

. . , .~. ~ . 

@(to) degrees 

t = 45 seconds f .~ "~ . .. . " 

t, = 60 seconds f 

t = 120 seconds f 
, "  . .  

R-1 

1 

1 

1 

.4 

,8 
" .~ ". .. 

48 
~ ~ . .  

1.6 
" ". 

0 

2 
.. ~. 

73.8 
. 

0 
. . 

Fig,  5-5 
- .  

Fig. 5-1 
5-2 
5-3 
5-4 

Fig. 5-6 
. I. 

.. - ~ " 

R-2 

- 5  

- 5  

- 5  

- 5  

- 5  

1.8 
~. 

0 
~~ . 

2 

51.8 

Fig.  5-7 

R- 3 
- ~~ 

0 

0 

0 

0 
"" 

0 
. "" 

0 
. . .- 

2.0 
, . ~" 

0 

2 
_. 

0 
.. " 

0 
. 

Fig. 5-8 
Fig. 5-9 

R - 4  

1 

1 

.4 

.8 

.8 

1.6 

0.3 

1.93 

73.8 

0 

Fig. 5-10 

Table 5-1 Summary of  Boundary  Conditions 

for High  Torque  Examples 

but  unfortunately,  i t s  computational  success i s  ve ry   s ens i t i ve   t o   t he  

nominal con t ro l   chosen   i n i t i a l ly .  

In   the  second  examplethe  ini t ia l   condi t ions of run R - 1  i n  Table 5-1 
are aga in   used ,   bu t   the   cont ro l   l eve l  of each je t  i s  ha lved   to  .206 

degrees/sec . Four pulse nominal con t ro l s  similar to   F igu re  5-lb are 2 
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used f o r  most  of the  remaining  examples,  including  this  example. A f t e r  

f o u r   i t e r a t i o n s ,   t h e   c o n t r o l s  and s t a t e   t r a j e c t o r i e s  have  evolved t o  

those  pictured  in   Figures  5-4a and  5-4b. A s  one might  expect,  since 

the maximum thrust  has  been  lowered  from  the  previous example (with 

a l l  other  parameters  remaining  the  same),  the  duration  of  the  pulses i s  

longer  than  in  the  previous example. The cost   has  now r i s e n   t o  .142 sec.  

as composed with a value  of .159 sec.  found  by  Hales. 

-1 

-1 

The two examples i l l u s t r a t e d   i n   F i g u r e s  5-5a, 5-5b, 5-6a, and 

5-6b a re   i den t i ca l   w i th   t he  second  example  except t h a t   f i n a l   t i m e s   a r e  

45 seconds  and  120  seconds,  respectively. I n   t h e   t h i r d  example, a f t e r  

4 i t e r a t i o n s ,  a c o s t   i n   f u e l  of .154 sec. was obtained as compard with 

an  approxiamtely 20$ higher  cost   of .1969 sec.  obtained  by Hales. I n  

the example of Figure 5-6, where the   f ina l   t ime i s  120  seconds,  an  optimal 

so lu t ion   y i e ld ing  a cos t  of .0924 sec.  w a s  ob ta ined   i n   f i ve   i t e r a t ions .  

-1 

-1 

-1 

This was only 10% below the  . lo24  see.   cost   obtained  by  Hales.  -I 

F o r   t h e   f i f t h  example the  opt imal   solut ion i s  d l u s t r a t e d   i n   F i g u r e  

5-7a and  5-7b.  Here t h e   i n i t i a l   c o n d i t i o n s  on t h e   s t a t e  were  given  by 

R-2 in   Table  5-1. The cos t  of the  opt imal   solut ion i s  .08  see. . -1 

If - x ( t  ) = 0, it can e a s i l y  be shown tha t   the   op t imal   fue l   cont ro l  
0 

i s  given as u,(t) = u 2 ( t )  = u (t) c 0 f o r  t < t < t . This  above 

example, f o r  which  the  analytical   answer i s  known, w i l l  be solved  present ly  

to  see  whether or not   the   a lgor i thm  g ives   the   cor rec t   so lu t ion   for   the  

control .  The nominal  control, similar t o   o t h e r  nominal con t ro l s ,  and 

a s soc ia t ed   s t a t e   t r a j ec to r i e s   a r e   i l l u s t r a t ed   i n   F igu res  5-8a and 5-8b. 
A f t e r   t h r e e   i t e r a t i o n s ,   t h e   c o n t r o l  and t r a j e c t o r i e s   a r e   g i v e n  by 

Figure 5-9a and  5-9b.  Only the  non-zero  pulses are shown.  The cos t  of 

t h i s   a lmos t   ze ro   con t ro l   e f fo r t  i s  .00041  see. or l e s s   t han   1 /2  of one 

per   cent  of the   cos t  of  previous  examples. 

3 0 f 

-1 

I n   t h e   f i n a l  example of t h i s   c h a p t e r ,   t h e   t e r m h a 1  state cons t r a in t  

function, - $[x(tf)] of  equation  2-4,  which  heyetofore  has  been  identical 

t o  x ( t f )  i s  changed t o  2(tf)-c where - c i s  a cons tan t .   In   the  

example of Figures 5-10a  and  5-10b, t h e   i n i t i a l   c o n d i t i o n s  of R-4  a r e  

used to   genera te   the   cont ro l  for an  example i n  which  the  f inal   value  of  

-.I x ( t f )  i s  s e l e c t e d   t o  be .? ueg/sec fo r   t he   angu la r   ve loc i ty  components 
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and .s f o r   t h e  f i rs t  three  Euler  Parameters.  The cos t  of t h e   f u e l  for 

example w a s  .1145 -6ec. . -1 

It can  be shown (Appendix A) t ha t   t he   pos i t i on ing  of a body  from 

any a t t i t u d e   t o  a new a t t i t u d e  can  be  accomplished  by a s i n g l e   r o t a t i o n  

about some f ixed   ax i s .   Th i s   ax i s  of r o t a t i o n  i s  r e l a t e d   c l o s e l y   t o   t h e  

Euler Parameters. For t he  example  of Figure 5-3, ca l cu la t ions  on t h e  

opt imal   control   h is tory  and  t ra jectory  revealed  that   the  f i rs t  pulses 

in   t he   con t ro l :  (l), al igned  the  angular   veloci ty   vector ,  E, 
approx ima te ly   pa ra l l e l   t o   t h i s  axis of ro t a t ion ,  and (2) set the 

approximate mean magnitude  of  the  angular  velocity  to  the  proper  value 

t o  cause   t he   s a t e l l i t e   t o   ro t a t e   t he .p rope r   ang le   fo r  a s i n g l e   r o t a t i o n  

of B degrees   in   the  t ime  interval  (tf-to). The pulse; of con t ro l  a t  

the   end   of   the   t ime  in te rva l   s top   the   ro ta t ion   o f   the   sa te l l i t e .   There  

i s  r e a s o n   t o   b e l i e v e   t h a t   f o r  a c e r t a i n   c l a s s  of problems,  the  optimal 

fuel   control   in   general   has   the  character is t ics   descr ibed  above.  Gener- 

a l i z a t i o n s   a r e   d i f f i c u l t   ( e v e n   f o r   t h e  examples of t h i s   c h a p t e r   i n  which 

gravi ty   gradient  and o r b i t a l   e f f e c t s  do not  enter)  because  the  angular 

v e l o c i t y   f o r  a body i s  not  in  general   constant  for  torque  free  motion. 

C. COMPUTATIONAL  CONSIDERATIONS 

Simulation of  the  system  dynamics w a s  done by  numerical   integration 

on a d i g i t a l  computer. The t ime   i n t e rva l ,   t o  tf, was divided 

into  approximately 100 increments  and  the  state w a s  s tored   for   each  

time  increment. The i n t e r v a l s  of s torage  are   not   necessar i ly  a l l  equal, 

s ince it i s  occasional ly   necessary  to  change t h e   s t e p   s i z e   i n   i n t e g r a t i o n  

(when a swi tch   in   the   cont ro l  i s  imminent) t o  be   sure   tha t   the   s ta te  

i s  s to red  a t  t imes  exact ly   equal   to   the  switching times. It i s  a l s o  

important to   in tegra te   the   sys tem  equat ions   exac t ly  up to   t he   t ime  a t  

which  the  control  switches.  If a switch i s  t o  occur  within a given 

in t eg ra t ion   s t ep ,   t he   s t ep  must  be  reduced appropriately.  

There are seve ra l  ways i n  which the   con t ro l  may be programmed i n t o  

the   d i f f e ren t i a l   equa t ions .  The method used i n   t h i s   r e p o r t  w a s  t o   d e c l a r e  

the  magnitude  and s ign  of   the f i rs t  pulse of  each component of the 

control  along  with  nominal  switching  times. The program  included  logic 
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which  determined  between  which  switching times Ti, the indepgndent 

va r i ab le  t was dur ing   each   s t ep   i n   t he   i n t eg ra t ion   o f   t he  septum 

equations. It than  assigned the con t ro l ,   u i ( t ) ,   i n  a +Ui, 0, TUi, 
0, *Ui, ... fashion. The updating  of  the  control after each   i t e r a t ion  

was done  by  changing the  switching  times. 

The l i n e a r  programming was done by  an  algorithm commonly c a l l e d  the 

"Simplex Method" desc r ibed   b r i e f ly   i n  Appendix B. The ai equation 4-7 
were s e t   e q u a l   t o  one second i n i t i a l l y ,   b u t  feasible so lu t ions   fo r   va r i a -  

t ions   in   the   swi tch ing   t imes   o f ten  d id  not   ex is t   for   such  small a . ' s  

before a near ly   opt imal   solut ion was obtained. The ai were then set 

equal   to   seven  seconds  for  a l l  examples i n  this  chapter.  The components 

of - i n   equa t ion  4-5 were assigned the value of -kx(t ) f o r   t h e  regul- 

a t o r  problem wi th  0 5 k s 1. k l  w a s  found t o   g i v e   t h e  best results i n  

the l a t e r   i n t e r a t i o n s  of a problem; 

1 

f 

Because the  convergence  of  numerical  methods  of  computing  optimal 

con t ro l s  depends t o  a c e r t a i n   e x t e n t  on the choice  of a nominal control ,  

the  following  rule  from  (reference 1) w a s  u sua l ly  employed t o   a s s i g n   t h e  

p o l a r i t y  of the first pulse of each component of the nominal  control. 

Sgn(f i r s t   pu lse  of u . ~  1 = - ~ g n [ ~ ~ ( t ~ ) ]  i f  X i ( t o )  f o I 
[ -Sgn[Xi+3(to)]  &herwise;  i=1,2,3 
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VI. MINIMUM  TIME ACQUISITION PROBLEM 
~ 

An indirect   approach  using  the method of  Chapter 4 can be used t o  

solve  the minimum tine a t t i t u d e   c o n t r o l  problem. 

I n   t h i s  problem, the object ive is  t o  de te rmine   the   cont ro l   to   reach  

a given  terminal state, x(tf> from a g i v e n   i n i t i a l  state, x(to), i n  

mimimum time. I n  the context of  Chapter 2, the  integrand of the  func- 

t i ona l   de f ined   i n   equa t ion  2-10 becomes 

f o r   t h e  minimum time problem. All other   aspec ts  are i d e n t i c a l   t o  the 

minimum f u e l  problem as presented  in   Chapter  2. If equation 6-1, i s  

subs t i t u t ed   i n to   equa t ion  2-7, the  Hamiltonian, H, i s  given as 

n 3 
. -  

H = 1 h i ( t )  1 c i j  (x , t )u j ( t )  - + terms  not   inwlving 1 (6-2) 
i=l j= 1 

Maximization  of H w i th   r e spec t   t o   t he   con t ro l ,   bea r ing   i n  mind t h a t  

t he   con t ro l  magnitude i s  bounded, gives 

A con t ro l  of t h i s   na tu re  i s  r e f e r r e d   t o  as %ang-bang"  and i s  always 

"on?' a t  i t s  maximum value   wi th   the   po lar i ty   be ing   e i ther   pos i t ive  or 

negative. 

"he  dynamics equat ions  used  to  work the example  of t h i s   chap te r   a r e  

the  t ime  invariant   high  torque  equat ions of  Chapter 5. 

A. INDI€ECT ALGORITHM  FOR TIME OPTIMAL  PROBLEMS 

Before   g iv ing   the   ind i rec t   a lgor i thm  used   here   to   so lve   the  minimum 

time  problem w e  consider two ideas  which w i l l  c l a r i f y  the reasoning   for  

this   " indirect"   a lgori thm. 
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The first idea i s  best presented   by   re fer r ing   to   the   cont ro l   h i s tor -  

ies presented   in   F igures  5-5b and 5-611. These  examples  were iden t i ca l  

w i t h  the   except ion that  tf = 45 seconds f o r  one  case  and t = 120 

seconds f o r  the o the r .   I n   bo th  examples,  u,(t) i s  the  control.component 

which i s  "on" fo r   t he   l onges t  time. The time  during  which  ug(t)  i s  

"off It  is  much s h o r t e r   f o r   t h e   c a s e   i n  which tf = 45 secorlds than it i s  

for   the   case   in   which  t = 120 seconds. The r e a s o n s   f o r   t h i s  are two- 

fo ld .  . I n   t h e  f i rs t  place,  the cos t   o f   the   op t imal   fue l   so lu t ion   for  

tf = 120 seconds  can  be no higher  than the op t ima l   fue l   so lu t ion   fo r   t he  

case i n  which t = 45 seconds,  hence t r i v i a l l y ,   t h e  time i n  which  the 

con t ro l  is  o f f  i s  l a r g e r   f o r   t h e   c a s e   i n  which  the f i n a l  time i s  l a r g e r .  

The second  reason is  t h a t ,   i n   g e n e r a l ,  as the  parameter tf i s  lowered 

while   leaving  everything  e lse  fixed, the cost   usual ly   increases--and 

increases   rap id ly  as tf approaches  the minimum va lue   fo r  which a 

feasible so lu t ion   ex is t s   ( th i s   ga ins   c redence  if  one considers  the  well  

known a n a l y t i c a l   f u e l   o p t i m a l   s o l u t i o n   f o r   t h e   c l a s s i c a l  "1/,* problem). 

f 

f 

f 

The second idea i s  presented as a proposit ion.   This  proposit ion 

concerns  the  fuel  optimal  problem as presented  in  Chapter 2. 

Proposition: If the   op t ima l   fue l   con t ro l   fo r  a g iven   a rb i t r a ry   s e t  of 

i n i t i a l   c o n d i t i o n s ,  has the   p roper ty  that a l l  of the components a r e  "on" 

f o r  a l l  time t, then that con t ro l  i s  also  the  t ime  opt imal   control .  

(The f i n a l   v a l u e   c o n s t r a i n t s  on t n e   s t a t e  must be an  equi l ibr ium  point) .  

Proof  of  Proposition: Assume the   fue l   op t imal   so lu t ion  i s  not time 

optimal. Then there e x i s t s  a tl such  that  t < tf f o r  which a f e a s i b l e  

s o l u t i o n   t o   t h e  problem may be found.  Because  the f i n a l   v a l u e   c o n s t r a i n t  

on the s t a t e  i s  an  equilibrium  point,  it follows that t h i s   s o l u t i o n  i s  a 

feasible s o l u t i o n   f o r   t h e  problem i n  which the f i n a l  time i s  tr r a t h e r  

than tl. But s ince  the assumed opt imal   fue l   cont ro l   has  i t s  con t ro l  

completely "on" f o r  a time with t 7 t i t s  f u e l   c o s t  i s  l a r g e r  

than   the   fue l   cos t   assoc ia ted   wi th  the o ther   feas ib le   so lu t ions   ending  

tl and it i s  therefore  not a fuel   opt imal   solut ion.  

1 

tf f 1' 

This proposit ion  guarantees that if a f u e l  problem is  solved  and  has 

the p rope r ty   t ha t  a l l  of  the components  of t h e   c o n t r o l   a r e  "on" f o r  a l l  

of the  time,  then a minimum time  solution  has  also  been  found.  In  working 
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examples, we w i l l  assume that if we f i n d  a minimum f u e l  problem f o r  

which the   con t ro l  i s  "onff - most  of the time, t h e n   t h e   f i n a l   t i m e   f o r   t h i s  

problem i s  a good approximation t o   t h e  minimum time  problem. 

Using  the two ideas  presented  above,  the  following scheme t o  compute 

time optimal  controls i s  proposed.  Solve  the minimum f u e l  problem f o r  a 

value  of f i n a l  time which i s  l a rge r   t han   t he  minimum time s ince   the  

minimum time is  not known, i t .  may be necessary to   increase   the   va lue   o f  

the final time  and  repeat  the  computation. After a minimum f u e l   s o l u t i o n  

i s  found f o r  some value of t a smaller value  of tf i s  taken.and a 

new  minimum f u e l   s o l u t i o n  i s  computed f o r   t h e  new (smaller) value  of 

tf. This i s  re ,pea ted   un t i l  a so lu t ion  i s  found f o r  which  the  control i s  

"on" f o r   t h e   e n t i r e   p e r i o d   f r o m   t o  tf. Then,  by the  proposi t ion,  

it i s  known that t h i s   c o n t r o l  i s  time  optimal.  Since  converging  to  the 

exact  time  optimal  would  be  difficult  and  coincidental, one  would normally 

only  continue  lowering tf and  repeating  the  computational scheme u n t i l  

the   cont ro l  was on for   a lmost  a l l  of  the time. The question of how  much 

t o  lower tf each  time a new  minimum f u e l   s o l u t i o n  i s  computed has  not 

been  mentioned. It must  be remembered from  the f i rs t  idea above t h a t   t h e  

Deriod  during  which  the  controllers  are  off  may be dras t ica l ly   shor tened  

by  lowering  the  f inal   t ime  by  just  a small value-especial ly  when t h e   f i n a l  

time i s  near i t s  minimum possible   value.   In   general ,  one  might  lower 

the  f inal  time, tf, by  about  one-sixth of the  "off"  period of the compon- 

e n t  of the   cont ro l   wi th   the  least "offn  period. 

f '  

B. NlTMERICAL EXAMl?W OF MINIMUM TIME PROBWM 

I n  Chapter 5, Figures 5-6, 5-4, and 5-5 give  the  fuel   opt imal  

s o l u t i o n s   f o r   t h e  same example fo r   va lues  of tf of 120 seconds, 60 
seconds,  and 45 seconds  respectively.  A so lu t ion  which i s  r e l a t i v e l y  

c l o s e   t o   t h e  minimum t ime  solut ion w i l l  be  computed for t h a t  example i n  

t h i s   s e c t i o n .  Lowering t h e   f i n a l  time t o  39 seconds  yields   the  solut ion 

of Figures 6-1a and 6-1b. Although  there i s  a f a i r ly   l a rge   pe r iod   ( abou t  

10 seconds)  during  which  the  third  control component u3 ( t ) ,  i s  "off", 

even i n  lowering tf by only two seconds one can see by  Figures  6-2a 

and  6-2b that t h e   c o n t r o l   c o s t  has increased  and that u,(t) i s  on f o r  
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a lmos t   t he   en t i r e   t ime   i n t e rva l   [ t o , t f ] .  The procedure was attempted 

f o r  a case i n  which t = 35 seconds,  but as could  be  expected  from  what 

has b e e n   s t a t e d   i n   t h e  last sect ion,  a feasible solution  could  not  even 
f 

be  found.  Hence, = 37 seconds  (Figures  6-2a  and  6-2b) i s  taken as 

the  approximate  time  optimal  solution. 
tf 

The necessary  condition on the  time opt imal   control   in   equat ion 6-3 
s t a t ed   t ha t   each  component of the   cont ro l  i s  "on" w i t h   e i t h e r  a pos i t i ve  

o r   nega t ive   po la r i ty   fo r   t he   en t i r e   t ime   i n t e rva l ,  [to,tf]. .Yet i n   t h e  

t ime  optimal  solution of  Figure  6-2a,  large  gaps  of  zero  control  are 

indicated for u (t) and u,( t ) .  One expects from t h e   r e s u l t   i n  eqn.  6-3 

that   the   proper  bang-bang control   (with no in te rva ls   o f ' coas t ing) :   for .  

u l ( t )  and  u,(t) would be ab le   to   lower  tf below the 37 seconds of 

the  above  example. A s  mentioned e a r l i e r ,  though,  the  approach  used i n  

t h i s   c h a p t e r   t o   s o l v e   t h e  minimum time  problem i s  not  exact.  

1 

There  do ex i s t   ca ses ,  however, i n  which time opt imal   control   h is tor-  

i e s   f o r   t h e   c l a s s  of  problems  considered  here may have i n t e r v a l s  of 

coasting. The following  sixth  order  system i s  such  an  example. 

x1 = x2 xl(o) = 1 

x = u  2 1  
xi(0) = 0; i=2,3, ... 6 

x3 = x4 

x4 = u2 

The cons t r a in t s  a t  t = t a r e   t h a t   x ( t  ) = 0 and ]u. 1 s 1, j=1,2,3. 

It follows that the minimum t ime  solut ion i s  tf = 2 wi th  one of many 
f - f  J 
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I -  

possible  optimal  controls  given as: 

u,(t) = -Sgn(l-t)  

u 2 ( t )  '= 0 o s  t s  2 

u,(t) = 0 

Hence it i s  seen  that   in   the  family  of   t ime  opt imal   controls ,  one of the 

many poss ib le   so lu t ions  i s  t h a t  two of the components  of the  control  are 

z e r o   f o r   t h e   e n t i r e   i n t e r v a l  [to,tf]. Other  time  optimal  solutions  can 

eas i ly   be   ob ta ined   fo r   t h i s   l i nea r  example i n  which some of the   cont ro l  

components  have  non-zero periods of  pulse  control  with  periods  of  zero 

con t ro l  between  the  pulses. 

The r e s u l t s  of the example  of this   chapter   a long  with  those  Figures  

5-4, 5-5, and 5-6 a re   t abula ted   in   Table  6-1. The f u e l   c o s t  i s  p lo t t ed  

a.gainst  the  terminal  time, tf, in   F igu re  6-3. The i n i t i a l   t i m e ,  

was zero   in  a l l  cases. The costs   obtained by  Hales fo r   t hese  same 

examples a r e   a l s o  shown. In   general ,   Hale 's   costs  were higher  than  those 

o b t a i n e d   i n   t h i s   r e p o r t .   I n  examplcs worked by  both  methods, i t  is  appar- 

en t  from th is   g raph  how t h e   f u e l   c o s t   r i s e s  as the  terminal  time  parameter 

i s  lowered. 

J 

In   addi t ion  to   Euler   Parameters ,   another  way of describing  the  three 

dimensional  orientation  of a body with  respect t,o a reference  frame i s  

the  three-axis   Euler   Angles   descr ipt ion.   Defini t ions  and  i l lustrat ions 

of th ree-axis   Euler   Angles   a re   g iven   in   ( re ference  13). Figure 6-4 
gives  the E u l e r  Angle desc r ip t ion  of  examples 6-1 and 6-2. E-1 ,  E-2, 

and E-3 (expressed on a scale  from -100 degrees t o  "100 degrees),  

correspond t o  x and x6, respect ively.  4' X5' 
Although  the minimum time  problem i s  so lved   i n   t h i s   chap te r   on ly  

approximately,  the method has a c e r t a i n   p r a c t i c a l   m e r i t   i n  view of t he  

f a c t   t h a t  one should  be  able   to  make a judicious  choice  for  the "nominal" 

cont ro l   each   t ime  (a f te r   the   in i t ia l   fue l   op t imal   computa t ion)   tha t  

tf i s  lowered,  and  hence,  save  computation  time. 
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Figure 6-2b Approximate Time Optimal; t -37 sec f- 
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Figure 6-4 3-Axis Euler  Angles f o r  Euler  Parameters 
of Figures 6-1 and 6-2 
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VII. LOW TORQUE ACQUISITION PROBLEM 

In   t h i s   chap te r ,   f ue l   op t ima l   con t ro l s  are computed f o r   t h e  same 

satel l i te  system  considered i n  Chapter 5 .  I n   t h i s   c a s e ,  however, the 

torque  levels   of   the   control  jets are low enough to   p rec lude   the   poss ib i l -  

i t y  of omi t t i ng   t he   e f f ec t s   i n   t he  dynamics  equations  of  the 'gravity 

gradient   torque  and  the  orbi ta l   motion  of   the  satel l i te   about   the  ear th .  

A. LCW TORQUE DYNAMICS AND SENSITIVITY EQUATIONS 

The complete  equations  of  motion of t h e   s a t e l l i t e  used for t h i s  

chapter  are  given  by  equation A-25 (Appendix A ) .  These  equations w i l l  

subsequently be t i m e  and  magnitude  scaled  for  convenience. 

The fol lowing  def ini t ions  are   given  in   equat ion 7-1 f o r  r ,  xl?  x2, 

x3' x4? x6, 5? x8? x9? uls' u2s? and u3s' 

x4 = w1 

5 = w2 X 

X6 = wg 

(continued) 
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X8 = v/( . - . 3 a> 
GM 

a 

X = r/a 
9 

GM 

a 
UlS = y/("$ 

u 2s = u2/(- GM 1 
a 3 

u3s = g--$ GM 

a 

The no ta t ion   fo r   d i f f e ren t  :t to   t ime ,  t ,  and 

(7-2) 

iat ion  with  respec 

scaled t i m e ,  7 ,  are given in   equa t ion  7-2. 

Using  equation 7-1 and  7-2,  the  equations of motion (A-25) a r e  

given as follows: 

x l = u  + -  k a  3 
1 Is 3 X 21a31 - 0'1a13 + e '(a33x2 - "23x3) (Xg) 

(continued) 
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The Fij; i=l , 2,. . .6; j=1,2,. . .6 t o  be  used i n   t h e  backward integra-  

t i o n  of equation 5-3 are given for t he  low torque  dynamics by equation 7-4, 

Fll = 0 

F~~ = e 'a - k (x3 + e t a  ) 

F~~ = e 'ap3 - kx(x2 + e 'ap3) 

33 x 33 

F = -  
-e * I  

1 5  E4 - 8 'x X (1 - k,) - x38'E5(1 + kx)/2 
2 5  

- kxO (e 'E a - 20 ' a 2 3 ~ 5 ) / 2  

+ skx(a31E6 - a21 E 4 )/2 

5 33 

-0 'I 
F~~ = - x3e 'E (1 + kx)/2 - k (e  1 )  %9a33/2 9 X 

+ skx(a21E8 + a 3 1 ~ 7 ) / 2  

F21 = -e 'a - k (x3 + 0 

Fee = 0 

33 Y 

(continued) 
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F23 = e 'a  - k (x + eral3) 13 y 1 

F24 = 2 1 
-e1' 

E + x3e'E2(1.- k ) /2  + e'xlX4(1 + ky) 
Y 

- k 8 '  (e 'E2a33 - 20 'a X ) /2  + Sk a E /2 
Y 13 4 Y 11 5 

F = -e% /2 + x 3 0 ' E 4 ( l  - ky)/2 + e'x,X5(l -+ k ) 
25 5 Y 

- k e ' (e 1E4a33 - 2e 'a X ) / 2  - Sk (a E + 2a3,X5)/2 
Y 13 5 y 11 4 

F26 = -e'% 9 /2 + x3e'E6(l - ky)/2 - k Y (0')%6a33/2 

+ sky(allE8 - 2a31X6)/2 

F~~ = e 'a  23 - kz(% + e 'a23)  

F32 = -eral3 - kZ(xl + 0 'a ) 13 (7-4) 

F33 = 0 

F34 - = @"X4 + X 8 ' E  (1 - k ) /2  - x2B'E2(1 + kZ)/2 
1 1  Z 

- kze (e 'Ela13 + e 'E a ) /2  + SkzallE3/2 2 23 

F = @"X + X @ ' E  (1 - kZ)/2  -x28'E4(l  + kZ)/2 
35 5 1 5  

- kze ' (0  IE5a13 + 8 'E4a25)/2 + SkZ(allE6 - 2a21x5)/2 

+ Skz(a E - 2a2,X6)/2 
11 7 

The Fi j  i=4,5,6; j=1,2,. . .6 a r e   t h e  same as i n  Chapter 5. 
Values for S, E ~ ,  E ~ ,  E ~ ,  E4, E ~ ,  E6, E ~ ,  E8, aha E are   def ined as follows: 9 

s = 3/(x9)3 
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E 2 = X 6 + X X /  4 5 5  

E4 = -3 + X */X 5 7  

E = X  - X x /  
8 4 5 6 7  

E = X  - X X /  
9 5 4 6 5  

It must be remembered from  equation 5-2  and A-12a t h a t  xi. is depend- 
en t  on X4, X5, and X6 and t h a t   t h e   d .  .(i, j=1,2,3) are  dependent on 

X4, X5, X6 and X Because of t h i s ,  one must o f t en  make s ing le  or double 

app l i ca t ion  of the  "chafn  rule" of d i f f e ren t i a t ion   i n   eva lua t ing   t he   F i j .  

For  example, F14 i s  given as follows: 

=J 

7' 

B. LOW TORQUE NUMERICAL EXAMPIE 

Orbi ta l   parameters   for   th i s  example are given as follows:  eccen- 

t r i c i t y  of t h e   e l l i p t i c a l   o r b i t ,   . 0 5 2 l ;  apogee of o r b i t ,  4651 miles; 

perigee of o r b i t ,  4 1 9  miles; orb i ta l   per iod ,  99 minutes.  Using 3960 

miles  and 4.11 x slugs as the   rad ius  .and mass of   the  ear th ,   the  
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sca l ing   fac tor   used  i n  

" GM - 1.1046 
a 3 

equation 7-1 i s  e a s i l y  computed as: 

-6 -2 x 10 sec.  

- s;c 

I n   t h i s   r e p o r t  w i l l  be  computed the   fue l   op t ima l   con t ro l   fo r   an  

example i d e n t i c a l   t o  one  done  by Hales  and  Fliigge-Lotz in   ( re ference  1). 

The moments  of i n e r t i a  of t h e   s a t e l l i t e  are the same as those  used  in 

Chapter .5 of t h i s   r e p o r t .  The i n i t i a l  and f i n a l  time (to and t f)  a r e  

given as 0 and 1196 seconds,  respectively. The i n i t i a l   v a l u e s  of the 

s t a t e ,   x ( t o )  , are   given as 3.8 x degrees/sec. , - 7.27 x 10 

degrees/sec., 3.44 x 10 degreeslsec. ,  .218, .638, . lob,  and 1.88, -2 

respectively.  Values for and x are -5.1 x and .9%. 
Thrus t   acce le ra t ion  bounds a r e  lowered t o   o n l y  1.905 x 10 degrees/sec. 

Scaled  values  (see  equation 7-1) of t and tf a r e  0 and 1.255. 

The f i r s t  three   (angular   ve loc i ty)  components  of t h e   i n i t i a l   s t a t e  have 

scaled  values  of .63,  -1.21, and .57. And the   t h rus t   acce l e ra t ion   s ca l e s  

t o   t h e   v a l u e  of 3.03 fo r   each  component. 

-2 
- 

xa 9 -4 -2 

0 

By using  the method described  in  Chapter 4 f o r   t h i s  example,  the 

opt imal   cont ro l   and   t ra jec tory  of Figures 7-1 and 7-2 a re   ob ta ined   i n  

f i v e   i t e r a t i o n s .  The f u e l   c o s t  i s  1.52 x 10-5sec. as opposed t o  

1.70 x 10 sec.  obtained  by  Hales  with  his  "extended method 

s teepest   descent ."  The cos t  of 1.52 x 10 sec .   ag rees   t o   w i th in   l e s s  

than one percent of the  t rue  opt imal   cost  of t h i s   t r a j e c t o r y  which was 

i n i t i a l l y   g e n e r a t e d  by  backward i n t e g r a t i o n  of t he   ad jo in t  and s t a t e  

d i f f e ren t i a l   equa t ions .  The second  pulse  for u (shown in   F igu re  7-1) 
d r i f t e d  between  the  position shown and a pos i t i on  a t  the  terminal  t ime 

for each new i-ceration  without  affecting  the  cost .   Apparently  the  posi-  

t i on ing  of t h i s   pu l se  i s  n o t   c r i t i c a l   t o  %he cos t  or terminal state 

cons t r a in t s .  

-I 

-3 -1 

- 3  -1 

3 

In   t he   s imu la t ion  of t h i s  example, it i s  necessary  to   evaluate  

8 '  and e'' (from  scaled  versions  of  equations A-22 and A-24) f o r  

s u b s t i t u t i o n   i n t o   t h e   r i g h t  hand sides of equation 7-3. 
Although  the  time  varying  dynamics  of  equation 7-3 do not  conceptually 

a l t e r   t h i s  method of so lv ing   for   fue l   op t imal   cont ro ls ,   approximate ly  25% 
more computing  time i s  required  per   i terat ion  because  of   the  bulky  r ight  
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hand sides  of  equations 7-3 and 7-4. One would probably  only  be 

i n t e r e s t e d   i n   u s i n g   s u c h  small t h r u s t   l e v e l s  as those   i n   t h i s   chap te r  

if t h e   s a t e l l i t e  were t o  be  engaged in  long  term  experimentation 

wi th   the   necess i ty  of us ing   the   acquis i t ion   sys tem many times. 
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Figure  7-1 Optimal  Angular  Velocity  and  Control 
Responses for Low Torque  Example 
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Figure 7-2 Optimal  Euler Parameters for Low Torque 
Example 



VIII. CONCLUSION 

By utilizing  the  fact  that  the  optimal  fuel  control  history  for 
the  nonlinear  control  problems  described in this  report  must  necessarily 

be  of  a  "bang-coast-bang"  nature, an algorithm  utilizing  linear  programming 

has  been  developed  which  iteratively  improves on  a  nominal  control  history. 

The  algorithm  is  based on expressing  the  variation  of  the  fuel  cost  and 

the  variations  of  the  components  of  the  terminal  state  constraints  as 

linear  functions  of  variations of the  "switching  times''  of  the  control. 

In using  the  algorithm,  the  nominal  control  is  expressed  as  a  series  of 

alternately  positive  and  negative  pulses  of  control  with  intervals of 

zero  control  between  each  pulse.  The  magnitude  of  the  pulses  is  equal  to 

the  bound on the  magnitude  of  the  control. 

The  algorithm  was  tested on  a  nonlinear  system  of  differential 

equations  describing  (by  Euler  Parameters)  the  complete  attitude  motion 

of  a  satellite  in  elliptical  orbit  about  the  earth. In the  case  where 

the  control  level  was  high  relative  to  other  terms  in  the  dynamical 

equations,  simplifications  were  made,  but  the  basic  nonlinearities  were 

retained.  The  algorithm  gave  solutions  which  compared  well  with  solutions 

to  identical  examples  obtained  by  other  methods. 

This  algorithm  has  the  advantage  that  it  is  quite  insensitive  to 

choices  in  the  nominal  control  compared  to  other  methods. In the  event 

the  optimal  control  has  several  pulses  for'  each  control  component,  the 

ai 
are  being  met)  to  guarantee  convergence. If this  is  not  done,  the  control 
will  oscillate  around  the  optimal  solution  without  being  exactly  optimal. 

In situations  such  as  this,  it  may  be  advantageous  to  switch  to a second- 

order  method  (which  usually  depend  on  being  initially  at  a  nearly 

optimal  solution)  such  as  described  in  (reference 7) to  complete  the 
convergence  to an optimal  solution. As in many  other  optimization 

techniques,  there  is  no  known  way to verify  that  the  solution  obtained  by 

this  linear  programming  algorithm  is  globally  optimal. 

of  equation 4-7 must  be  reduced  toward  zero  (as  the  terminal  constraints 

This  technique  of  solving  for  open-loop  fuel  optimal  controls  could 

be  actually  applied  to  a  satellite  system as follows:  Measure  the 
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present state o f   t h e   s a t e l l i t e  and e x t r a p o l a t e   t o  what t h e   s t a t e  w i l l  

be  (by  integrating  the dynamics equations) a t  some su i tab ly   d i s tan t   t ime 

i n   t h e   f u t u r e  if no con t ro l  i s  being  applied.  The optimal  control  could 

then be calculated  in   the  inter im  t ime  before   the  calculated  s ta te  i s  

r eached .and   app l i ed   t o   t he   s a t e l l i t e  when the   p red ic ted   s ta te  i s  reached. 

I n  doing   th i s ,  however, it i s  t o  be noted   tha t   there  i s  a p o s s i b i l i t y  

( remote)   of   nolse   dis turbing  the  extrapolated  s ta te .  

F o r   f u t u r e   i n v e s t i g a t i o n s ,   e f f o r t  might  be d i r ec t ed  toward  develop- 

ing similar a lgor i thms  for   o ther   cos t   c r i te r ia   ( such  as minimum time) 

and  toward  developing a minimum fue l   feedback   cont ro l  l a w .  Although t h i s  

report   suggests  an  experimental   approach  to  the minimum time  problem it 

does  not  treat  this  problem  completely. It i s  a l s o   t o  be  noted  that  the 

optimal  fecdhack  control  problem where the  control  i s  known t o  have a 

bang-coast-bang  character i s  s t i l l  essentially  unsolved  for  dynamical 

systems  with  three  or more s t a t e   va r i ab le s .  
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APPENDIX A.  EQUATIONS OF MOTION 

The equations of motion of a s a t e l l i t e   i n   o r b i t   a r e   d e r i v e d   i n   t h i s  

appendix  by  us .lg Euler  Parameters. Hales and  Fliigge-Lotz  have  given a 

rather   complete   der ivat ion of  the  att i tude  dynamical  equations of a ro t a -  

t i n g  body in   ( re ference  l), but  have  only  stated  the  form  of  the  orbital  

equat ions.   In  view  of t h e i r  work, the   a t t i tude   equat ions  w i l l  be 

discussed  only  by  pointing  out  the more sa l i en t   f ea tu re s   i n   t he   de r iva t ion .  

The o rb i t a l   equa t ions ,  however, a re   der ived  i n  a more de t a i l ed  manner. 

I n   d e r i v i n g   t h e   o r b i t a l  and at t i tude  equat i0n.s  of a s a t e l l i t e   i n  

orbi t   about  a f ixed  mass, three  reference  frames w i l l  be used.  Figure A - 1  

i nd ica t e s  two of the  three  coordinate  systems  to be  used in   de r iv ing   t he  

equations of motion. The e a r t h  (or other   f ixed  a t t ract ing  body) ,   about  

which   the   o rb i t   ex is t s ,  i s  designated  by P and i s  assumed t o  be an  

i n e r t i a l l y   f i x e d   p o i n t  mass. The center  of mass of t h e   s a t e l l i . t e ,  P*, 

moves i n   a n   e l l i p t i c a l   o r b i t   a b o u t  P. The o r ig in  of the (Xe ,Ye’Zp)  

axes i s  i n e r t i a l l y   f i x e d  a t  P, with z pe rpend icu la r   t o   t he   o rb i t a l  

plane  and x and ye of a r b i t r a r y   o r i e n t a t i o n .  The o rb i t a l   r e f e rence  

frame,  denoted by (xr,yr,zr) i s  centered a t  P* with z p a r a l l e l   t o  

z . x i s  e i t h e r   d i r e c t e d   a l o n g   t h e   l i n e  from P t o  P* o r  remains  pa.ralle1 

t o  xe. A third  reference  f rame,  a body fixed  reference  denoted  by 

(x, ,yb,zb),  i s  centered a t  P* and f i x e d   p a r a l l e l   t o   t h e   s a t e l l i t e ’ s  

p r i n c i p a l  moments of i n e r t i a .  

e 

e 

r 

e r 

Uni t   vec tors   para l le l   to   each  of the above  axes w i l l  be denoted by 

the  vector - n with  appropriate   subscr ipts .   For  example, n d.enotes 

the   un i t   vec to r   pa ra l l e l  t o  the x ax i s .  
-xr 

r 

1. ATTITULE DYNAlCiXAL EQUATIONS 

Euler ‘s dynamical  equations  are  given A-1. 

‘ B  - (Iy - I z ) W  LJ = Nx 
B B  

I X W X  Y Z  

I W - (Iz - I x ) W z  W = N ‘ B  B B  
Y Y  x Y 

I z W z  - (Ix - I )W W = NZ ‘ B  B B  
Y X Y  
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Figure A-1. 



I X J  I y  and Iz are the   cen t ro ida l  moments of i ne r t i a   abou t   t he   p r inc ipa l  

axes of the body and NxJ NyJ and NZ are components of t h e   t o t a l   a c t i v e  

torque  exerted on the  body  and  resolved  along  the  respective body f ixed  

axes. W W , and 0 are def ined   in   equa t ion  A - 2 ,  where WE i s  

the   t o t a l   angu la r   ve loc i ty  of t h e   s a t e l l i t e   i n   t h e   i n e r t i a l   r e f e r e n c e  

frame . 
x '  Y Z 

- 

B B B B w = w   + w  - x -xb y Zyb + w  z "zb n 

The angular   veloci ty  of the  orbi ta l   reference  f rame  with  respect  t o  

t he   i ne r t i a l   r e f e rence  frame i s  given  by  equation A-3 .  

The anguLar v e l o c i t y  of t h e   s a t e l l i t e   i n   t h e   o r b i t a l   r e f e r e n c e  

f rame i s  defined  by UBIR - and  given in   equat ion A-4 .  

SIR = c;B - WR - - - (A-4)  

The components  of W - are  defined  by X1, X*, and X3; hence 

equation A - 5  follows. 

The uni t   vec tors  n n n  of the  orbi ta l   reference  f rame "xr' -yr' -zr 
a r e   r e l a t e d   t o   t h e   u n i t   v e c t o r s  n n n of the body f i x e d   r e f e r -  

ence  frame-by a direct ion  cosine  t ransformation  matr ix ,  D, def ined   in  

equation A-6 .  

-xb' -yb , "zb 

n -xb n n -xr -xr 

- Zb "zr "zr 

The dynamical  equations of A - 1  can now be expressed  in  terms of the 

relat ive  angular   veloci t ies   of   equat ion A-5 and the   d i rec t ion   cos ines  of 

equation A-6. Combining equations A-2  through A-6  appropriately  gives   the 



express ions   for   the   to ta l   angular   ve loc i ty  components as: 

B w = X + 0d13 
X 1 

B w = X2 + 0dP3 
Y 

w = X + &ai3 
z 3 

The t ime  der ivat ives  of (A-7) give 

' B  * 
.. 

w = X + 8d13 
.. 

X 1 ed13 

' B  * 
.. 

w = x + ea23 
.. 

X 2 + 8d23 

' B  .. .. 
= x3 + ea33 + ea33 

Z 

Normalized iner t ia   parameters  kxJ kyJ z 
k are   def ined by  equation A-9. 

The Euler  dynamical  equations of A - 1  can now be  reduced  by  use of 

equations A-7 , A-8,  and A-9 as follows: 

N .. 

1\5 .. .. x = -  
2 1  - 8d23 - €3d23 - k (X + ;dl,) ( X 3  + id33) 

Y Y 1  
(A-10) 

NZ x3 = - 
I Z  

.. .. 
- Qd33 - 8d33 - kZ(X1 + 0d 13 ) (X2 + 8de3) 

The d i f f e ren t i a l   equa t ions  of A - 1 0  are  not  yet   complete.   Expressions  for 

the   d i rec t iona l   cos ine  components  and  time de r iva t ives  of these components 

which  appear in   equa t ion  A - 1 0  w i l l  be discussed  in  the  following  section. 

I n   t h i s   s e c t i o n  3 of t h i s  appendix,  expressions f o r  the   ac t ive   to rque  

components  of  equa+.ion A-10 w i l l  be  expanded,  and i n   s e c t i o n  4 t h e   o r b i t a l  



considerations w i l l  g ive  expressions  for  8 and 8.  
.. 

2. KINEMATICAL EQUATIONS 

In   ( re ference  14), t h e   r e l a t i v e  merits of various schemes of 

computlng  and  describing  spacial   rotations of a r i g i d  body are described. 

‘Phis  reference  concludes  that E u l e r  Parameters  provide  the most u se fu l  

c h a r a c t e r i s t i c s   f o r   a n a l y s i s  and simulation of  problems  dealing  with 

large  angle  maneuvers of unsymmetrical  bodies.  Although  the  Euler  Angle 

descr ipt ion of ro t a t ion   l ends   i t s e l f   t o   ea s i e r   geomet r i c   i n t e rp re t a t ion ,  

t h e r e   a r e   s i n g u l a r i t i e s   i n   t h e   e q u a t i o n s  a t  r o t a t i o n s  of 90 degrees. 

The Euler  Parameter  description  does  not  encounter a s i n g u l a r i t y   i n   t h e  

equa t ions   un t i l   t he   ro t a t ion  i s  180’. 

The purpose  of t h i s   s e c t i o n  i s  to   b r ie f ly   descr ibe   Euler   Parameters  

and t o   s t a t e   f i r s t - o r d e r   d i f f e r e n t i a l   e q u a t i o n s   f o r   t h e   E u l e r   P a r a m e t e r s  

i n  terms of the components of t he   r e l a t ive   angu la r   ve loc i ty  (Xl,  X2,  X3) 
and i n  terms of the  Euler  Parameters. Then, t he   r e l a t ions  which  express 

the components of the  matrix D ( in   equa t ion  A-6)  i n  terms of the   Euler  

Parameters  are  given. 

From kinematical   considerations,  it can  be shown  two s e t s  of ortho- 

gonal  axes n n  and  n n n ) with  the same ver tex 

can  be made coincidental   (except   in   special   cases   involving a s i n g u l a r i t y )  

by a s ingle   ro ta t ion   about  some f ixed   un i t   vec to r ,  - k. The components of 

t h i s   vec to r   a r e   i nva r i an t  to expres s ion   i n   e i t he r  of  the two reference 

frames . I f   the   conpcnents  of k are   given as e e and e the 

Euler  Parameters w i l l  be defined as in   Equat ion A-11. 

‘%,, -yry -zry -xb -ybJ “Zb 

- x’  y’ Z’ 

w2 = 2 s i n  812 e 
Y 

wg = 2 s i n   e Z  

w4 = 2 cos 812 

(A-11)  

B i s  the magnitude of the   ro ta t ion .   Phys ica l ly ,  one  would expect  only 

three  independent  Euler  Param2ters. From trigonometric  considerations of 
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equation A-11 it can be seen that the  expected  redundancy i s  given by 

equation A-12. 

w 3 4  

i=l 

(A-12) 

5 

In   ( re ference  l5), the   d i rec t ion   cos ines  of equation A-6 are  given 

i n  terms of the  Euler  Parameters as: 

1 2  2 2 2 
dll = 4 (wl + w4 - w2 - w3 ) 

d12 2 1 2 = 1 (w w + w3w4) 

1 2  2 2 2 d22 = 4 (W2 + W4 - W1 -‘ W3 ) (A-12a) 

d31 2 1 3 

1 

= 1 (w w f w2w4) 

d32 = 5 (W2W3 - W. W ) 1 4  

1 2  2 2 2 d33 = 4 (W, -t- W4 - W1 - W2 ) 

And d i f f e ren t i a l   eq l~a t ions   fo r   t he   Eu le r   Pa rame te r s   a r e   g iven  as 

- 1  w = -  
1 2 (~2x3 - W3X2 + ~4x1) 

; = L ( - W X  + w x  + w x )  2 2 1 3  3 1   4 2  

(A-13)  

(continued) 



- 1  
w3 2 

= - (w1x2 - w Y + w p 3 )  
2 1  

(A-13) 
- 1  w4 = 5 (-W1X1 - w2x2 - w3x3) 

Di f f e ren t i a t ing  A-12a wi th   respec t   to   t ime and using A - 1 3  gives   the 

expressions  of A-14 which w i l l  l a t e r  be  used in   equat ion A-10. 

(A-14)  

3. ACTIVE TORQUES 

The ac t ive   t o rque   app l i ed   t o   t he   s a t e l l i t e   cons i s t s  of  an  external 

torque due to   g rav i ty   g rad ien t   f rom  the   ear th  and a control  torque  generated 

by the   gas   j e t s  on t h e   s a t e l l i t e .  The t h r e e   s e t s  of c o n t r o l   a r e  assumed 

t o  be mounted such  that  the  torque  from  each  contributes  torque  about 

only one p r inc ipa l   ax i s  of inertia.   Therefore,   the  active  torque  terms 

in   equat ion  A-10  may  be expressed as in   equat ion  A - 1 5 .  Note t h a t   t h e  

control   torque  terms  are   wri t ten as products   in   the  respect ive moments of 

i n e r t i a  s o  that   the   equat ions may l a t e r  be  normalized to   angular   acce le ra-  

t i o n .  

N = I u  + N  x x 1  xg 

Y Y 2  Yg 
N = I u  + N  (A-15)  

N = I u  + N  
Z z 3 zg 

The N N N are   gravi ty   gradient   terms  and  are   given i n  (reference 18) 
xg' Yg' zg 

as 

(A-16) 
(continued) 



(A-16) 

where G i s  the  universal   gsavi ty   constant ,  M i s  the  mass of point  

P ( ea r th ) ,  and r i s  the  distance  from P t o  P* ( s a t e l l i t e ) .  Combin- 

ing  the above two sets   of   expressions  and  normalizing  with  respect   to  

the moments  of i n e r t i a   y i e l d s  A-17 for the   ac t ive   angular   acce le ra t i6ns .  

Nx - =  u +-  3GM k d d 
I X  ’ r  3 x 21 31 

N 
Y =  
I Y  

u2 + kydlldyl 
r 

Nz 
” “u + -  3GM k d d 
IZ 3 r  3 z 11 21 

4. ORBITAL EQUATIONS 

The o r b i t a l   c h a r a c t e r i s t i c s  of t h e   s a t e l l i t e   ( s e e   r e f .  16) w i l l  be 

cons idered   in   th i s   sec t ion .  If the mass o f   t h e   s a t e l l i t e  i s  denoted  by 

M, the  force  exerted on it by g r a v i t y  may be  used t o  determine two d i f f e r -  

en t i a l   equa t ions .  

(A-18) 

-S 
a i s  the   acce le ra t ion  of  the mass center  of t h e   s a t e l l i t e .  From Figure 

A-1 and  kinematical   considerations,   the  velocity,  V .  of t h e   s a t e l l i t e  

i s  given as follows: 
S’ 

“s 
v = r n  + ren -xr ”yr 

It follows  by time d i f f e r e n t i a t i o n  of V t h a t  a i s  given  by  equation 
“s “s 

A-19. 
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Subs t i tu t ion   o f  ( A - 1 9 )  i n t o  (A-18)  and  equating  coefficients of respect ive 

un i t   vec to r s   y i e lds   d i f f e ren t i a l   equa t ions  ( A - 2 0 ) .  

The second d i f f e r e n t i a l  

1 - 2  - re 2 = constant 

(A-20)  

equation  can be so lved   ea s i ly   t o   y i e ld  

( A - 2 1 )  

From "Keplers 's  Law", the   cons tzn t   in   equa t ion  (A-2)  can be evaluated as 

where a and E describe  the  geometry of t he   e l l i p se   ( s ee   F igu re  ( A - 1 ) )  

and T is the   o rb i ta l   t ime  per iod .   In   ( re ference  l7), T i s  given as 

I n  view of equation (A-21)  and t h e  above  consta.nts, ( A - 2 1 )  can  be  wri t ten 

as follows : 

Subs t i t u t i cn  of ( A - 2 2 )  l n t o   t h e  f i r s t  equation of ( A - 2 0 )  y i e l d s :  

2 1/2 1 G M  ;E = a ( l - E  ) GM - - 
n " 2  I I 

( A - 2 2 )  

( A - 2 3 )  

.. 
Q call be  evaluated  by  different ia t ing  equat lon ( A - 2 2 )  t o   y i e l d :  



(A-24) 

5. COMPLETE SATELLITE EQUATIONS OF MOTION 

The r e s u l t s  of the  previous  sections w i l l  be combined p r e s e n t l y   t o  

give a complete set of dynamical state equations. Complete equations for 
X1, X2, X3 a r e   ob ta ined -by   subs t i t u t ion  of equations A-14 and A-17 i n t o  

A-10. The d i f f e ren t i a l   equa t ions  of the  Euler  Parameters  (equation A-15) 

are   repeated below.  Equation A-23 may be w r i t t e n  as two f i rs t  order 

d i f f e ren t i a l   equa t ions  by  defining v as v=r. The r e s u l t s   a r e   g i v e n   i n  

equation A-25. 

X = U  +-kd d 3GM 

l l r  3 x 2 1  31 

x = u  + -  3GM k d d 
2 2 r  3 y 11 31 

x = u  + -  3GM k d d 
3 3 r  3 11 21 

- k (X1 + 8d ) (X2 t 
Z 13 

.. 

.. 

w1 = -(w x - w3x2 + w4x1) 

i = -(-w x + w x + W4XJ 

i = -(w x - w x + w4x3) 

w * 1  = -(-w x - w2x2 -w3x3) 

I 
2 2 3  

1 
2 2 1 3  3 1  

1 
3 2 1 2  2 1  

4 2 11  
(continued) 
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2 1 1 

r r 
v = a(1 - E  ) .GM- - GM- 3 2 

8 and e are eva lua ted   a lgeb ra i ca l ly   i n   t he  above s ta te  equations  by 

equations A-22 and A-24. 6 and are repeated as equation A-26 f o r  

convenience. 

1. 

(A-26) 

Equation A-25 may  now be  solved  (numeric,lly)  for Xl, X2, X g ,  W1, W2, 
W3, W 4 ,  TJ and r i f  in i t i -a1   condi t ions   and   va lues   for   the   cont ro l  

var iab les  (ul; u2, u3) are given  and i f  A-26 i s  used t o   e v a l u t e  8 

and 8 a l g e b r a i c a l l y   f o r   s u b s t i t u t i o n   i n t o  A-25. The d i f fe ren t i -a1  

equations of A-25 may e i t h e r  be  integrated as they  s tand  or   they may be 

integrated.  after d e l e t i n g  one of t he   d i f f e ren t i a l   equa t ions   fo r   t he  

Euler  Parameters  and  using  the  algebraic  equation A-12 for   so lv ine ;   for  

the  deleted  Euler   Parameter .  The former  methob i s  used i n   t h e   r e p o r t .  

.. 
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APFE3TDIX B: LINEAR PROGRAMMIWG 

This i s  in tended   to   be  on ly  a brief d i scuss ion   t o  menti.on a f e w  

important  ideas i n   l i n e a r  programming. The reader  i s  r e f e r r e d   t o  (refer- 

ences 19 and/or 20) f o r   f u r t h e r   d i s c u s s i o n   e i t h e r  on l i n e a r  programming 

i n   g e n e r a l  or on the  powerful  Simplex Method of   so lv ing   l inear  programming 

problems. 

The l i n e a r  programming  problem s u i t a b l e   f o r   s o l u t i o n  by the  Simplex 

Method can be sta-ced as: 

Minimize clzl + c2z  2...cnzn 

subject   to :  z. 2 0 j= l ,2 , .  . . n 
J 

and 

(B-2) 

adz1 + adz2 + ... a z = b mn n m 

The ai j ,  bi, c . (i=1,2, .  . .m; j= l ,2 , .  . .n) are given. 
J 

Some of   the  constraint   equat ions of €3-2 may 3e given as cons t r a in t  

i nequa l i t i e s ,   bu t   t he   i nequa l i t i e s  can  e a s i l y  be  reduced t o  equal i t i es   by  

the  appropriate   introduct ion of non-negative dummy varriables.  Heme, no 

gene ra l i t y  i s  l o s t  by  considering  only  equalri ty  constraints i n  expression 

B-2. 

The fo l lowing   def in i t ions   l ead   to   va luable   cons idera t ions .  

Definit ion: 

A set ,  S i s  s a i d   t o  be  convex i f ,  given  any two poin ts  z and -a 
-b ' z both  elements  of S, then ever;. point  z s a t i s f y i n g  

"c 

-C 
z = x z  f ( 1 4 ) Z b  O S A S - 1  -a 

i s  a l s o   a n   e l e n e n t  of S. 

Definit ion: 

A point ,  z which i s  an  elemen5  of a convex set ,  S, i s  sa id  -c ' 
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t o  be  an  extreme  point  of S i f  it can  not 'be  expressed as - - 
z = X&+ (1 - X)Zb o s  x s  1 

C 

for   any z and z (excluding z ) i n  S. a -b -C 

It can be  proved tha t   t he   so lu t ion  ( i f  it e x i s t s )   f o r  - z 

(2 = zl, z2, z 3 , .  . .zn)  which  minimizes  the  functional  defined  in  expres- 

s ion  B-1 occurs a t  an  extreme  point  of  the  convex set defined  by  expression 

B-2. 
The next   s tep i s  to   re la te   the   ex t reme  po in ts  of the convex s e t  

of feas ib le   so lu t ions  of  expression B-2 t o   t h e  a of expression B-2. 
Before  doing  this,  A i s  defined as the column vector  whose components 

a r e  a 1j '  a 2 j ,  a3jY." B i s  s imi la r ly   def ined  as the column vector  

with components bl, b2, ... b . Expression B-2 can  thus  be  written as 

i j  

j 

m j  ' 

m .  

z A  -!- z A  -+ ... Z A  = B 
11  2 2   n n  (B-3) 

The theorem  which  relates  the  extreme  points  of  the  convex  set of f e a s i -  

b le   so lu t ions   to   the  A of  expression B-3 can be s t a t e d  a s :  
j 

z = ( z  - 1, z2, Z3' * . Z n )  

i s  an  extreme  point  of  the  convex  set  of  feasible  solutions  of  expression 

B-2 if and  only i f  the   pos i t ive  z a r e   c o e f f i c i e n t s  of l i n e a r l y  independ- 

en t   vec tors ,  A in expression B-3. 
j 

From a l l  o f   t h i s ,  i t  i s  seen  that  i n  solviog a l i n e a r  programmtng 

program,  only  feasible  solutions  generated  by m l inearly  independent 

vectors need  be investigated.   This would s t i l l  be an eliormous task f o r  

l i n e a r  programming  problems of the  dimension  encountered i n   t h i s   r e p o r t  

were it no t   fo r   t he  Simplex Method. The Simplex Method finds  an  extreme 

point  and  determine  whether o r  not it minimizes  expression B-1.  I f   n o t ,  

it cont inues   to   f ind  new neighboring  extreme  points  by a process  using 

the  previously  stated  theorem  which  give  values  for  the  functional of 

expression B-1  not  greater  than  the  value  associated  with  the  preceeding 

extreme  point.   In a f i n i t e  number of s teps   (usua l ly   l ess   than  2m) a 

minimum so lu t ion  i s  found. The method also i s  a b l e   t o   i d e n t i f y  problems 

wi th  no f i n i t e  minimum solutions  and  problems  with no feas ib le   so lu t ions .  
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